This study investigates the effects of blowing ratio, density ratio, and spanwise pitch on the flat plate film cooling from two rows of compound angled cylindrical holes. Two arrangements of two-row compound angled cylindrical holes are tested: (a) the first row and the second row are oriented in staggered and same compound angled direction (β = +45 deg for the first row and +45 deg for the second row); (b) the first row and the second row are oriented in inline and opposite direction (β = +45 deg for the first row and −45 deg for the second row). The cooling hole is 4 mm in diameter with an inclined angle of 30 deg. The streamwise row-to-row spacing is fixed at 3d, and the spanwise hole-to-hole (p) is varying from 4d, 6d to 8d for both designs. The film cooling effectiveness measurements were performed in a low-speed wind tunnel in which the turbulence intensity is kept at 6%. There are 36 cases for each design including four blowing ratios (M = 0.5, 1.0, 1.5, and 2.0), three density ratios (DR = 1.0, 1.5, and 2.0), and three hole-to-hole spacing (p/d = 4, 6, and 8). The detailed film cooling effectiveness distributions were obtained by using the steady-state pressure-sensitive paint (PSP) technique. The spanwise-averaged cooling effectiveness are compared over the range of flow parameters. Some interesting observations are discovered including blowing ratio effect strongly depending on geometric design; staggered arrangement of the hole with same orientation does not yield better effectiveness at higher blowing ratio. Currently, film cooling effectiveness correlation of two-row compound angled cylindrical holes is not available, so this study developed the correlations for the inline arrangement of holes with opposing angles and the staggered arrangement of holes with same angles. The results and correlations are expected to provide useful information for the two-row flat plate film cooling analysis.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer
,
140
(
11
), p.
113001
.
2.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
3.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
4.
Han
,
J. C.
, and
Ekkad
,
S.
,
2001
, “
Recent Development in Turbine Blade Film Cooling
,”
Int. J. Rotating Mach.
,
7
(
1
), pp.
21
40
.
5.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
6.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.
7.
Han
,
J. C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(1), p.
013001
.
8.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2013
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
ASME
Paper No. HT2013-17250.
9.
Kianpour
,
E.
,
Sidik
,
N. A. C.
, and
Golshokouh
,
I.
,
2014
, “
Film Cooling Effectiveness in a Gas Turbine Engine: A Review
,”
J. Teknol.
,
71
(
2
), pp.
25
35
.
10.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.
11.
Sinha
,
A. K.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1991
, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
12.
Haas
,
W.
,
Rodi
,
W.
, and
Schönung
,
B.
,
1992
, “
The Influence of Density Difference Between Hot and Coolant Gas on Film Cooling by a Row of Holes: Predictions and Experiments
,”
ASME J. Turbomach.
,
114
(
4
), pp.
747
755
.
13.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.
14.
Lutum
,
E.
, and
Johnson
,
B. S.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
15.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
16.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
17.
Zuniga
,
H. A.
, and
Kapat
,
J. S.
,
2006
, “
Effect of Increasing Pitch-to-Diameter Ratio on the Film Cooling Effectiveness of Shaped and Cylindrical Holes Embedded in the Trenches
,”
ASME
Paper No. GT2009-60080.
18.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A FilmCooling Correlation for Shaped Holes on a Flat Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
19.
Chen
,
A.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2014
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
ASME
Paper No. GT2014-26232.
20.
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
,
1978
, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Power
,
100
(
2
), pp.
303
307
.
21.
Jubran
,
B.
, and
Brown
,
A.
,
1985
, “
Film Cooling From Two Rows of Holes Inclined in the Streamwise and Spanwise Directions
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
84
89
.
22.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Gas Turbine Film Cooling: Flowfield Due to a Second Row of Holes
,”
ASME J. Turbomach.
,
113
(
3
), pp.
450
456
.
23.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Criello
,
S.
, and
Jackson
,
S. M.
,
1994
, “
Film Cooling From Holes With Compound Angle Orientations—Part 1: Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.
24.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
,
123
(
1
), pp.
57
64
.
25.
Ahn
,
J.
,
Jung
,
I. S.
, and
Lee
,
J. S.
,
2003
, “
Film Cooling From Two Rows of Holes With Opposite Orientation Angles: Injectant Behavior and Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
24
(1), pp.
91
99
.
26.
Jubran
,
B. A.
,
Al-Hamadi
,
A.
, and
Theodoridis
,
G.
,
1997
, “
Film Cooling and Heat Transfer With Air Injection Through Two Rows of Compound Angle Holes
,”
Heat Mass Transfer
,
33
(
1–2
), pp.
93
100
.
27.
Jubran
,
B. A.
, and
Maiteh
,
B. Y.
,
1999
, “
Film Cooling and Heat Transfer From a Combination of Two Rows of Simple and/or Compound Angle Holes in Inline and/or Staggered Configuration
,”
Heat Mass Transfer
,
34
(
6
), pp.
495
502
.
28.
Maiteh
,
B. Y.
, and
Jubran
,
B. A.
,
2004
, “
Effects of Pressure Gradient on Film Cooling Effectiveness From Two Rows of Simple and Compound Angle Holes in Combination
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1457
1469
.
29.
Yang
,
W.
,
Liu
,
X.
,
Li
,
G.
, and
Zhang
,
J.
,
2012
, “
Experimental Investigation on Heat Transfer Characteristics of Film Cooling Using Parallel-Inlet Holes
,”
Int. J. Therm. Sci.
,
60
, pp.
32
40
.
30.
Bashir
,
M. H.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Film Cooling Effectiveness for Three-Row Compound Angle Hole Design on Flat Plate Using PSP Technique
,”
Int. J. Heat Mass Transfer
,
115
, pp.
918
929
.
31.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
, and
Dees
,
J. E.
,
2017
, “
Adiabatic Film Cooling Effectiveness Measurements Throughout Multirow Film Cooling Arrays
,”
ASME J. Turbomach.
,
139
, p.
101008
.
32.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.