Overall cooling effectiveness was determined for a full-coverage effusion cooled surface which simulated a portion of a double wall cooling gas turbine blade. The overall cooling effectiveness was measured with high thermal-conductivity artificial marble using infrared thermography. The Biot number of artificial marble was matched to real gas turbine blade conditions. Blowing ratio ranged from 0.5 to 2.5 with the density ratio of DR = 1.5. A variation of cooling arrangements, including impingement-only, film cooling-only, film cooling with impingement, and film cooling with impingement and pins, as well as forward/backward film injection, was employed to provide a systematic understanding on their contribution to improve cooling efficiency. Also investigated was the effect of reducing wall thickness. Local, laterally averaged, and area-averaged overall cooling effectiveness were shown to illustrate the effects of cooling arrangements and wall thickness. Results showed that adding impingement and pins to film cooling, and decreasing wall thickness increase the cooling efficiency significantly. Also observed was that adopting backward injection for thin full-coverage effusion plate improves the cooling efficiency.

References

References
1.
Liang
,
G.
,
2009
, “
Turbine Airfoil With Multiple Near Wall Compartment Cooling
,” U.S. Patent No.
US7556476B1
.https://patents.google.com/patent/US7556476B1/en
2.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
,
Yang
,
L.
, and
Ligrani
,
P.
,
2016
, “
Effect of Reynolds Number, Hole Patterns and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
.
3.
Li
,
W.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Yang
,
L.
,
2016
, “
Effect of Reynolds Number, Hole Patterns, Target Plate Thickness on Cooling Performance of an Impinging Jet Array—Part II: Conjugate Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
10
), p.
101001
.
4.
Li
,
W.
,
Xu
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J. Heat Transfer
,
139
(
1
), p.
012201
.
5.
W.
Li
,
X.
Li
,
J.
Ren
, and
H.
Jiang
,
2017
, “
High Resolution Measurements of Film Cooling Performance of Simple and Compound Angle Cylindrical Holes with Varying Hole Length-to-Diameter Ratio—Part I: Adiabatic Film Effectiveness
,”
Int. J. Therm. Sci.
,
124
, pp.
146
161
.
6.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
, pp.
209
216
.
7.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME
Paper No. 2001-GT-0130.
8.
Li
,
W.
,
Li
,
Y.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Effect of Thermal Boundary Conditions and Thermal Conductivity on Conjugate Heat Transfer Performance in Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
95
, pp.
579
592
.
9.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
10.
Jung
,
E. Y.
,
Chung
,
H.
,
Choi
,
S. M.
,
Woo
,
T. K.
, and
Cho
,
H. H.
,
2017
, “
Conjugate Heat Transfer on Full-Coverage Film Cooling With Array Jet Impingements With Various Biot Numbers
,”
Exp. Thermal Fluid Sci.
,
83
, pp.
1
8
.
11.
Kim
,
S. H.
,
Ahn
,
K. H.
,
Jung
,
E. Y.
,
Park
,
J. S.
,
Hwang
,
K. Y.
, and
Cho
,
H. H.
,
2014
, “
Total Cooling Effectiveness on Laminated Multilayer for Impingement/Effusion Cooling System
,”
ASME
Paper No. GT2014-26692.
12.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.
13.
Chavez
,
K.
,
Slavens
,
T. N.
, and
Bogard
,
D.
,
2016
, “
Effects of Internal and Film Cooling on the Overall Effectiveness of a Fully Cooled Turbine Airfoil With Shaped Holes
,”
ASME
Paper No. GT2016-57992.
14.
Williams
,
R. P.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
,”
ASME J. Turbomach.
,
136
(
3
), p.
031006
.
15.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.
16.
Mensch
,
A.
, and
Thole
,
K. A.
,
2016
, “
Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring
,”
ASME J. Turbomach.
,
138
(
3
), p.
031007
.
17.
Mensch
,
A.
, and
Thole
,
K.
,
2015
, “
Simulations of Multiphase Particle Deposition on a Gas Turbine Endwall With Impingement and Film Cooling
,”
ASME J. Turbomach.
,
137
(
11
), p.
111002
.
18.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
Experimental Investigation of Endwall Heat Transfer With Film and Impingement Cooling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
101901
.
19.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
, pp.
348
359
.
20.
Chi
,
Z.
,
Ren
,
J.
,
Jiang
,
H.
, and
Zang
,
S.
,
2016
, “
Geometrical Optimization and Experimental Validation of a Tripod Film Cooling Hole With Asymmetric Side Holes
,”
ASME J. Heat Transfer
,
138
(
6
), p.
061701
.
21.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2014
, “
Computational Fluid Dynamics Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101006
.
22.
Rutledge
,
J. L.
,
Polanka
,
M. D.
, and
N. J.
Greiner
,
2016
, “
Computational Fluid Dynamics Evaluations of Film Cooling Flow Scaling Between Engine and Experimental Conditions
,”
ASME J. Turbomach.
,
139
(
2
), p.
021004
.
23.
W.
Li
,
X.
Li
,
J.
Ren
, and
H.
Jiang
,
2018
, “
Length to Diameter Ratio Effect on Heat Transfer Performance of Simple and Compound Angle Holes in Thin-Wall Airfoil Cooling
,”
Int. J. Heat Mass Transfer
,
127
(Part C), pp.
348
359
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
25.
Zhang
,
C.
,
Lin
,
Y.
,
Xu
,
Q.
,
Liu
,
G.
, and
Song
,
B.
, 2009, “
Cooling Effectiveness of Effusion Walls With Deflection Hole Angles Measured by Infrared Imaging
,”
Appl. Therm. Eng.
,
29
(5–6), pp. 966–972.
26.
Li
,
W.
,
Lu
,
F.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
, 2019, “
Wall Thickness and Injection Direction Effects on Flat Plate Full-Coverage Film Cooling Arrays: Adiabatic Film Effectiveness and Heat Transfer Coefficient
,”
Int. J. Therm. Sci.
,
136
, pp. 172–181.
27.
Metzger
,
D. E.
, and
Cordaro
,
J. V.
,
1981
, “
The Effect of Crossflow at the Entrance on Heat Transfer Enhancement in Tubes
,”
ASME J. Heat Transfer
,
103
(
1
), pp.
178
179
.
28.
Lee
,
C. P.
, and
Bunker
,
R. S.
,
2006
, “
Thermal Shield Turbine Airfoil
,” U.S. Patent No.
US7011502B2
.https://patents.google.com/patent/US7011502B2/en
29.
Li
,
W.
,
Lu
,
F.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
A Novel Method for Designing Fan-Shaped Holes With Short Length-to-Diameter ratio in Producing High Film Cooling Performance for Thin-Wall Turbine Airfoil
,”
ASME J. Turbomach.
,
140
(
9
), p.
091004
.
You do not currently have access to this content.