Enhancement of droplet heat transfer on a hydrophobic surface is examined via introducing the fin-like structures inside the droplet without altering the wetting state of the surface. A solution crystallization of polycarbonate surface is carried out and the functionalized silica particles are deposited onto the crystallized surface to create the hydrophobic surface characteristics. The ferrous particles (Fe2O3) are locally spread onto the hydrophobic surface and, later, manipulated by an external magneto-static force generating various configurations of fin-like structures inside the droplet. The droplet with fin-like structures is heated from the hydrophobic surface through introducing a constant temperature heat source. Flow and temperature fields inside the droplet are simulated in line with the experimental conditions. It is found that changing the configuration of the fin-like structures in the droplet modifies significantly the flow and temperature fields inside the droplet. The Bond number remains less than unity for all configurations of the fin-like structures while demonstrating the importance of the Marangoni current over the buoyancy current in the flow field. The presence of the fin-like structures lowers the difference between the fluid bulk and the minimum temperatures inside the droplet and improves considerably the heat transfer rates and the Nusselt number.

References

References
1.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Ali
,
H.
, and
Sahin
,
A. Z.
,
2016
, “
Internal Fluidity of a Sessile Droplet With the Presence of Particles on a Hydrophobic Surface
,”
Numer. Heat Transfer, Part A
,
70
(
10
), pp.
1118
1140
.
2.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
,
Ali
,
H.
, and
Al-Qahtani
,
H.
,
2016
, “
Heat Transfer Characteristics and Internal Fluidity of a Sessile Droplet on Hydrophilic and Hydrophobic Surfaces
,”
Appl. Therm. Eng.
,
108
, pp.
628
640
.
3.
Bhushan
,
B.
,
Jung
,
Y. C.
, and
Koch
,
K.
,
2009
, “
Micro-, Nano-and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion
,”
Philos. Trans. R. Soc. London A
,
367
(
1894
), pp.
1631
1672
.
4.
Al-Sharafi
,
A.
,
Ali
,
H.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
,
Al-Aqeeli
,
N.
,
Al-Sulaiman
,
F.
, and
Khaled
,
M.
,
2017
, “
Internal Flow and Heat Transfer in a Droplet Located on a Superhydrophobic Surface
,”
Int. J. Therm. Sci.
,
121
, pp.
213
227
.
5.
Zhao
,
Y.
, and
Chung
,
H.
,
2017
, “
Numerical Simulation of Droplet Transfer Behavior in Variable Polarity Gas Metal Arc Welding
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1129
1141
.
6.
Misyura
,
S.
,
2017
, “
Contact Angle and Droplet Heat Transfer During Evaporation on Structured and Smooth Surfaces of Heated Wall
,”
Appl. Surf. Sci.
,
414
, pp.
188
196
.
7.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
, and
Ali
,
H.
, 2018, “
Water Droplet Mobility on a Hydrophobic Surface Under a Thermal Radiative Heating
,”
Appl. Therm. Eng.
,
128
, pp. 92–106.
8.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
, and
Ali
,
H.
,
2017
, “
Droplet Heat Transfer on Micro-Post Arrays: Effect of Droplet Size on Droplet Thermal Characteristics
,”
Int. J. Heat Fluid Flow
,
68
, pp.
62
78
.
9.
Zheng
,
Z.
,
Zhou
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Numerical Investigation on Conjugate Heat Transfer of Evaporating Thin Film in a Sessile Droplet
,”
Int. J. Heat Mass Transfer
,
101
, pp.
10
19
.
10.
Sharafi, A.
,
Yilbas, B. S.
,
Ali, H.
, and
Al-Aqeeli, A.
, 2018, “
A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface
,”
Sci. Rep.
,
8
, pp. 1–20.https://www.nature.com/articles/s41598-018-21511-w
11.
Moon
,
J. H.
,
Cho
,
M.
, and
Lee
,
S. H.
,
2016
, “
Dynamic Wetting and Heat Transfer Characteristics of a Liquid Droplet Impinging on Heated Textured Surfaces
,”
Int. J. Heat Mass Transfer
,
97
, pp.
308
317
.
12.
Jung
,
J.
,
Jeong
,
S.
, and
Kim
,
H.
,
2016
, “
Investigation of Single-Droplet/Wall Collision Heat Transfer Characteristics Using Infrared Thermometry
,”
Int. J. Heat Mass Transfer
,
92
, pp.
774
783
.
13.
Zubkov
,
V.
,
Cossali
,
G. E.
,
Tonini
,
S.
,
Rybdylova
,
O.
,
Crua
,
C.
,
Heikal
,
M.
, and
Sazhin
,
S.
,
2017
, “
Mathematical Modelling of Heating and Evaporation of a Spheroidal Droplet
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2181
2190
.
14.
Seo
,
D.
,
Oh
,
S.
,
Shin
,
S.
, and
Nam
,
Y.
,
2017
, “
Dynamic Heat Transfer Analysis of Condensed Droplets Growing and Coalescing on Water Repellent Surfaces
,”
Int. J. Heat Mass Transfer
,
114
, pp.
934
943
.
15.
Wen
,
R.
,
Lan
,
Z.
,
Peng
,
B.
,
Xu
,
W.
, and
Ma
,
X.
,
2015
, “
Droplet Dynamics and Heat Transfer for Dropwise Condensation at Lower and Ultra-Lower Pressure
,”
Appl. Therm. Eng.
,
88
, pp.
265
273
.
16.
Kvasov
,
D.
,
Naletova
,
V.
,
Beketova
,
E.
, and
Dikanskii
,
Y.
,
2017
, “
Magnetic Fluid Droplet in a Harmonic Electric Field
,”
J. Magn. Magn. Mater.
,
431
, pp.
161
163
.
17.
Yang
,
C.
,
Ning
,
Y.
,
Ku
,
X.
,
Zhuang
,
G.
, and
Li
,
G.
,
2018
, “
Automatic Magnetic Manipulation of Droplets on an Open Surface Using a Superhydrophobic Electromagnet Needle
,”
Sens. Actuators, B
,
257
, pp.
409
418
.
18.
Guba
,
S.
,
Horváth
,
B.
, and
Szalai
,
I.
,
2017
, “
Determination of the Force Acting on Biocompatible Ferrofluid Droplets in Inhomogeneous Magnetic Field
,”
J. Magn. Magn. Mater.
,
444
, pp.
173
177
.
19.
Saroj
,
S. K.
,
Asfer
,
M.
,
Sunderka
,
A.
, and
Panigrahi
,
P. K.
,
2016
, “
Two-Fluid Mixing Inside a Sessile Micro Droplet Using Magnetic Beads Actuation
,”
Sens. Actuators, A
,
244
, pp.
112
120
.
20.
Cimbala
,
R.
,
Kurimský
,
J.
,
Rajňák
,
M.
,
Paulovičová
,
K.
,
Timko
,
M.
,
Kopčanský
,
P.
,
Kolcun
,
M.
,
Kosterec
,
M.
,
Bucko
,
S.
, and
Kurimská
,
M.
,
2017
, “
Magnetic Fluid Droplet Deformation in Electrostatic Field
,”
J. Electrost.
,
88
, pp.
55
59
.
21.
Ray
,
A.
,
Varma
,
V.
,
Jayaneel
,
P.
,
Sudharsan
,
N.
,
Wang
,
Z.
, and
Ramanujan
,
R.
,
2017
, “
On Demand Manipulation of Ferrofluid Droplets by Magnetic Fields
,”
Sens. Actuators, B
,
242
, pp.
760
768
.
22.
Ramesh
,
K.
,
2016
, “
Influence of Heat and Mass Transfer on Peristaltic Flow of a Couple Stress Fluid Through Porous Medium in the Presence of Inclined Magnetic Field in an Inclined Asymmetric Channel
,”
J. Mol. Liq.
,
219
, pp.
256
271
.
23.
Kumari
,
N.
, and
Garimella
,
S. V.
,
2011
, “
Characterization of the Heat Transfer Accompanying Electrowetting or Gravity-Induced Droplet Motion
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
4037
4050
.
24.
Gerdroodbary
,
M. B.
,
Sheikholeslami
,
M.
,
Mousavi
,
S. V.
,
Anazadehsayed
,
A.
, and
Moradi
,
R.
,
2018
, “
The Influence of Non-Uniform Magnetic Field on Heat Transfer Intensification of Ferrofluid Inside a T-Junction
,”
Chem. Eng. Process.: Process Intensif.
,
123
, pp.
58
66
.
25.
COMSOL, 2018, “
COMSOL Multiphysics
,” COMSOL, Inc., Burlington, MA, accessed Feb. 13, 2018, http://www.comsol.com/comsol-multiphysics.
26.
He
,
Q.
, and
Jiao
,
D.
,
2014
, “
Explicit and Unconditionally Stable Time-Domain Finite-Element Method With a More Than “Optimal” Speedup
,”
Electromagnetics
,
34
(
3–4
), pp.
199
209
.
27.
Yilbas
,
B.
,
Ali
,
H.
,
Al‐Aqeeli
,
N.
,
Khaled
,
M.
,
Abu‐Dheir
,
N.
, and
Varanasi
,
K.
,
2016
, “
Solvent‐Induced Crystallization of a Polycarbonate Surface and Texture Copying by Polydimethylsiloxane for Improved Surface Hydrophobicity
,”
J. Appl. Polym. Sci.
,
133
(
22
), p. 43467.
28.
Heib
,
F.
,
Hempelmann
,
R.
,
Munief
,
W.
,
Ingebrandt
,
S.
,
Fug
,
F.
,
Possart
,
W.
,
Groß
,
K.
, and
Schmitt
,
M.
,
2015
, “
High-Precision Drop Shape Analysis (HPDSA) of Quasistatic Contact Angles on Silanized Silicon Wafers With Different Surface Topographies During Inclining-Plate Measurements: Influence of the Surface Roughness on the Contact Line Dynamics
,”
Appl. Surf. Sci.
,
342
, pp.
11
25
.
29.
Schmitt
,
M.
,
Groß
,
K.
,
Grub
,
J.
, and
Heib
,
F.
,
2015
, “
Detailed Statistical Contact Angle Analyses; “Slow Moving” Drops on Inclining Silicon-Oxide Surfaces
,”
J. Colloid Interface Sci.
,
447
, pp.
229
239
.
30.
Kwok
,
D.
,
Gietzelt
,
T.
,
Grundke
,
K.
,
Jacobasch
,
H.-J.
, and
Neumann
,
A. W.
,
1997
, “
Contact Angle Measurements and Contact Angle Interpretation—1: Contact Angle Measurements by Axisymmetric Drop Shape Analysis and a Goniometer Sessile Drop Technique
,”
Langmuir
,
13
(
10
), pp.
2880
2894
.
31.
Yong
,
W. Y. D.
,
Zhang
,
Z.
,
Cristobal
,
G.
, and
Chin
,
W. S.
,
2014
, “
One-Pot Synthesis of Surface Functionalized Spherical Silica Particles
,”
Colloids Surf. A
,
460
, pp.
151
157
.
32.
Al-Sharafi
,
A.
,
Sahin
,
A. Z.
,
Yilbas
,
B. S.
, and
Shuja
,
S.
,
2016
, “
Marangoni Convection Flow and Heat Transfer Characteristics of Water–CNT Nanofluid Droplets
,”
Numer. Heat Transfer, Part A
,
69
(
7
), pp.
763
780
.
33.
ElSherbini
,
A.
, and
Jacobi
,
A.
,
2006
, “
Retention Forces and Contact Angles for Critical Liquid Drops on Non-Horizontal Surfaces
,”
J. Colloid Interface Sci.
,
299
(
2
), pp.
841
849
.
34.
Pilat
,
D.
,
Papadopoulos
,
P.
,
Schaffel
,
D.
,
Vollmer
,
D.
,
Berger
,
R.
, and
Butt
,
H.-J.
,
2012
, “
Dynamic Measurement of the Force Required to Move a Liquid Drop on a Solid Surface
,”
Langmuir
,
28
(
49
), pp.
16812
16820
.
35.
Ayyad
,
A. H.
,
2010
, “
Thermodynamic Derivation of the Young–Dupré Form Equations for the Case of Two Immiscible Liquid Drops Resting on a Solid Substrate
,”
J. Colloid Interface Sci.
,
346
(
2
), pp.
483
485
.
36.
Tam
,
D.
,
von Arnim
,
V.
,
McKinley
,
G.
, and
Hosoi
,
A.
,
2009
, “
Marangoni Convection in Droplets on Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
624
, pp.
101
123
.
37.
Quéré
,
D.
,
2005
, “
Non-Sticking Drops
,”
Rep. Prog. Phys.
,
68
(
11
), pp.
2495
2532
.
38.
Smith
,
J. D.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R. E.
,
McKinley
,
G. H.
, and
Varanasi
,
K. K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.
You do not currently have access to this content.