Impinging heat transferred by a pulsed jet induced by a six-chevron nozzle on a semicylindrical concave surface is investigated by varying jet Reynolds numbers (5000 ≤ Re ≤ 20,000), operational frequencies (0 Hz ≤ f ≤ 25 Hz), and dimensionless nozzle-to-surface distances (1 ≤ H/d ≤ 8) while fixing the duty cycle as DC = 0.5. The semicylindrical concave surface has a cylinder diameter-to-nozzle diameter ratio (D/d) of 10. The results show that the nozzle-to-surface distance has a significant impact on the impingement heat transfer of the pulsed chevron jet. An optimal nozzle-to-surface distance for achieving the maximum stagnation Nusselt number appears at H/d  =  6. In the wall jet zone, the averaged Nusselt number is the largest at H/d = 2 and the smallest at H/d = 8. In comparison with the chevron steady jet impingement, the effect of nozzle-to-surface distance on the convective heat transfer becomes less notable for the pulsed chevron jet impingement. The stagnation Nusselt number under the pulsed chevron jet impingement is mostly less than that under the chevron steady jet impingement. However, at H/d = 8, the pulsed chevron jet is more effective than the steady jet. This study confirmed that the pulsed chevron jet produced higher azimuthally averaged Nusselt numbers than the steady chevron jet in the wall jet flow zone at large nozzle-to-surface distances. The stagnation Nusselt numbers by the pulsed chevron jet impingement have a maximum reduction of 21.0% (f = 20 Hz, H/d = 4, and Re = 2000) compared with that of the steady chevron jet impingement. Also, the pulsed chevron jet impingement heat transfer on a concave surface is less effective compared to a flat surface. The stagnation Nusselt numbers on the semicylindrical concave surface have a maximum reduction of about 37.7% (f = 20 Hz, H/d = 8, and Re = 5000) compared with that on the flat surface.

References

References
1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
, and
Moss
,
M. A.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
5.
Carlomagno
,
G. M.
, and
Ianiro
,
A.
,
2014
, “
Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
15
35
.
6.
Zumbrunnen
,
D. A.
, and
Aziz
,
M.
,
1993
, “
Convective Heat Transfer Enhancement Due to Intermittency in an Impinging Jet
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
91
98
.
7.
Chung
,
Y. M.
, and
Luo
,
K. H.
,
2002
, “
Unsteady Heat Transfer Analysis of an Impinging Jet
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1039
1048
.
8.
Herwig
,
H.
, and
Middelberg
,
G.
,
2008
, “
The Physics of Unsteady Jet Impingement and Its Heat Transfer Performance
,”
Acta Mech.
,
201
(
1–4
), pp.
171
184
.
9.
Pakhomov
,
M. A.
, and
Terekhov
,
V. I.
,
2015
, “
Numerical Study of Fluid Flow and Heat Transfer Characteristics in an Intermittent Turbulent Impinging Round Jet
,”
Int. J. Therm. Sci.
,
87
, pp.
85
93
.
10.
Sheriff
,
H. S.
, and
Zumbrunnen
,
D. A.
,
1994
, “
Effect of Flow Pulsations on the Cooling Effectiveness of an Impinging Jet
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
886
895
.
11.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.
12.
Hofmann
,
H. M.
,
Movileanu
,
D. L.
,
Kind
,
M.
, and
Martin
,
H.
,
2007
, “
Influence of a Pulsation on Heat Transfer and Flow Structure in Submerged Impinging Jets
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3638
3648
.
13.
Ghadi
,
S.
,
Esmailpour
,
K.
,
Hosseinalipour
,
S. M.
, and
Mujumdar
,
A.
,
2016
, “
Experimental Study of Formation and Development of Coherent Vortical Structures in Pulsed Turbulent Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
382
389
.
14.
Persoons
,
T.
,
Balgazin
,
K.
,
Brown
,
K.
, and
Murray
,
D. B.
,
2013
, “
Scaling of Convective Heat Transfer Enhancement Due to Flow Pulsation in an Axisymmetric Impinging Jet
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111012
.
15.
Zaman
,
K. B. M. Q.
,
Bridges
,
J. E.
, and
Huff
,
D. L.
,
2011
, “
Evolution From ‘Tabs’ to ‘Chevron Technology’—A Review
,”
Int. J. Aeroacoustics
,
10
(
5–6
), pp.
685
710
.
16.
Gao
,
N.
,
Sun
,
H.
, and
Ewing
,
D.
,
2003
, “
Heat Transfer to Impinging Round Jets With Triangular Tabs
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2557
2569
.
17.
Violato
,
D.
, and
Scarano
,
F.
,
2011
, “
Three-Dimensional Evolution of Flow Structures in Transitional Circular and Chevron Jets
,”
Phys. Fluids
,
23
(
12
), p.
124104
.
18.
Violato
,
D.
,
Ianiro
,
A.
,
Cardone
,
G.
, and
Scarano
,
F.
,
2012
, “
Three-Dimensional Vortex Dynamics and Convective Heat Transfer in Circular and Chevron Impinging Jets
,”
Int. J. Heat Fluid Flow
,
37
, pp.
22
36
.
19.
Vinze
,
R.
,
Chandel
,
S.
,
Limaye
,
M. D.
, and
Prabhu
,
S. V.
,
2016
, “
Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Incompressible Air Jet From a Chevron Nozzle
,”
Exp. Therm. Fluid Sci.
,
78
, pp.
124
136
.
20.
Guan
,
T.
,
Zhang
,
J. Z.
,
Shan
,
Y.
, and
Hang
,
J.
,
2017
, “
Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 1: Experimental Analysis
,”
Int. J. Heat Mass Transfer
,
106
, pp.
329
338
.
21.
Guan
,
T.
,
Zhang
,
J. Z.
, and
Shan
,
Y.
,
2017
, “
Conjugate Heat Transfer on Leading Edge of a Conical Wall Subjected to External Cold Flow and Internal Hot Jet Impingement From Chevron Nozzle—Part 2: Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
106
, pp.
339
355
.
22.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
D. S.
,
1997
, “
Turbulent Flow and Heat Transfer Measurements on a Curved Surface With a Fully Developed Round Impinging Jet
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
160
169
.
23.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Won
,
S. Y.
,
1999
, “
The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
42
(
13
), pp.
2489
2497
.
24.
Cornaro
,
C.
,
Fleischer
,
A. S.
, and
Goldstein
,
R. J.
,
1999
, “
Flow Visualization of a Round Jet Impinging on Cylindrical Surfaces
,”
Exp. Therm. Fluid Sci.
,
20
(
2
), pp.
66
78
.
25.
Fenot
,
M.
,
Dorignac
,
E.
, and
Vullierme
,
J. J.
,
2008
, “
An Experimental Study on Hot Round Jets Impinging on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
945
956
.
26.
Nguepnang
,
M. A.
,
Boer
,
M.
, and
Kim
,
T.
,
2016
, “
Stagnation Heat Transfer on a Concave Surface Cooled by Unconfined Slot Jet
,”
J. Thermophys. Heat Transfer
,
30
(
3
), pp.
558
566
.
27.
Zhou
,
Y.
,
Lin
,
G. P.
,
Bu
,
X. Q.
,
Bai
,
L. Z.
, and
Wen
,
D. S.
,
2017
, “
Experimental Study of Curvature Effects on Jet Impingement Heat Transfer on Concave Surfaces
,”
Chin. J. Aeronautics
,
30
(
2
), pp.
586
594
.
28.
Aillaud
,
P.
,
Gicquel
,
L. Y. M.
, and
Duchaine
,
F.
,
2017
, “
Investigation of Concave Curvature Effect for an Impinging Jet Flow
,”
Phys. Rev. Fluids
,
2
, p.
114608
.
29.
Lai
,
H. Z.
,
Naughton
,
J. W.
, and
Lindberg
,
W. R.
,
2003
, “
An Experimental Investigation of Starting Impinging Jets
,”
ASME J. Fluids Eng.
,
123
, (
2
), pp.
275
282
.
30.
Mohmmadpour
,
J.
,
Rajabi-Zargarabadi
,
M.
,
Mujumdar
,
M.
, and
Ahmadi
,
H.
,
2014
, “
Effect of Intermittent and Sinusoidal Pulsed Flows on Impingement Heat Transfer From a Concave Surface
,”
Int. J. Therm. Sci.
,
76
, pp.
118
127
.
31.
Zargarabadi
,
R. M.
,
Rezaei
,
E.
, and
Yousefi-Lafouraki
,
B.
,
2018
, “
Numerical Analysis of Turbulent Flow and Heat Transfer of Sinusoidal Pulsed Jet Impingement on an Asymmetrical Concave Surface
,”
Appl. Therm. Eng.
,
128
, pp.
578
585
.
32.
Lyu
,
Y. W.
,
Zhang
,
J. Z.
,
Wang
,
B. Y.
, and
Tan
,
X. M.
,
2018
, “
Experimental of Chevron Nozzle Jet Impingement Heat Transfer on Flat Targeting Surface
,”
Acta Aeronaut. Astronaut. Sin.
,
39
(3), p.
121694
.
33.
Holman
,
J. P.
,
2002
,
Heat Transfer
,
9th ed.
,
McGraw-Hill Book Company
,
New York
.
34.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
35.
Foss
,
J. K.
, and
Zaman
,
K. B. M. Q.
,
1999
, “
Large- and Small-Scale Vortical Motion in a Shear Layer Perturbed by Tabs
,”
J. Fluid Mech.
,
382
, pp.
307
329
.
36.
Hrycak
,
P.
,
1982
, “
Heat Transfer and Flow Characteristics of Jets Impinging on a Concave Hemispherical Plate
,”
Heat Transfer
, Hemisphere Publishing, Washington, DC, Vol. 3, pp. 357–362.
You do not currently have access to this content.