Due to the microscopic roughness of contacting materials, an additional thermal resistance arises from the constriction and spreading of heat near contact spots. Predictive models for contact resistance typically consider abutting semi-infinite cylinders subjected to an adiabatic boundary condition along their outer radius. At the nominal plane of contact, an isothermal and circular contact spot is surrounded by an adiabatic annulus and the far-field boundary condition is one of constant heat flux. However, cylinders with flat bases do not mimic the geometry of contacts. To remedy this, we perturb the geometry of the problem such that, in cross section, the circular contact is surrounded by an adiabatic arc. When the curvature of this arc is small, we employ a series solution for the leading-order (flat base) problem. Then, Green's second identity is used to compute the increase in spreading resistance in a single cylinder, and thus the contact resistance for abutting ones, without fully resolving the temperature field. Complementary numerical results for contact resistance span the full range of contact fraction and protrusion angle of the arc. The results suggest as much as a 10–15% increase in contact resistance for realistic contact fraction and asperity slopes. When the protrusion angle is negative, the decrease in spreading resistance for a single cylinder is also provided.

References

References
1.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1966
, “
Thermal Contact Resistance
,” MIT, Cambridge, MA, Report No. DSR 74542-41.
2.
Yovanovich
,
M.
, and
Marotta
,
E.
,
2003
, “
Thermal Spreading and Contact Resistances
,”
Handbook of Heat Transfer
,
A.
Bejan
and
A.
Kraus
, eds.,
Wiley
, Hoboken, NJ, p.
261
.
3.
Crowdy
,
D. G.
,
2016
, “
Analytical Formulae for Longitudinal Slip Lengths Over Unidirectional Superhydrophobic Surfaces With Curved Menisci
,”
J. Fluid Mech.
,
791
, p. R7.
4.
Hodes
,
M.
,
Kirk
,
T.
, and
Crowdy
,
D.
,
2018
, “
Spreading and Contact Resistance Formulae Capturing Boundary Curvature and Contact Distribution Effects
,”
ASME J. Heat Transfer
,
140
(
10
), p.
104503
.
5.
Cooper
,
M. G.
,
Mikic
,
B. B.
, and
Yovanovich
,
M. M.
,
1969
, “
Thermal Contact Conductance
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
279
300
.
6.
Das
,
A. K.
, and
Sadhal
,
S. S.
,
1992
, “
The Effect of Interstitial Fluid on Thermal Constriction Resistance
,”
ASME J. Heat Transfer
,
114
(
4
), p.
1045
.
7.
Negus
,
K.
, and
Yovanovich
,
M.
,
1984
, “
Constriction Resistance of Circular Flux Tubes With Mixed Boundary Conditions by Linear Superposition of Neumann Solutions
,”
ASME
Paper No. 84-HT-84.
8.
Hunter
,
A.
, and
Williams
,
A.
,
1968
, “
Heat Flow Across Metallic Joints—The Constriction Alleviation Factor
,”
Int. J. Heat Mass Transfer
,
12
(
4
), pp.
524
526
.
9.
Sneddon
,
I. N.
,
1966
,
Mixed Boundary Value Problems in Potential Theory
,
North-Holland Publishing Company
,
Amsterdam, The Netherlands
.
10.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
11.
Yovanovich
,
M. M.
,
2005
, “
Four Decades of Research on Thermal Contact, Gap, and Joint Resistance in Microelectronics
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
2
), pp.
182
206
.
12.
Razavi
,
M.
,
Muzychka
,
Y. S.
, and
Kocabiyik
,
S.
,
2016
, “
Review of Advances in Thermal Spreading Resistance Problems
,”
J. Thermophys. Heat Transfer
,
30
(
4
), pp.
863
879
.
13.
Madhusudana
,
C. V.
,
1980
, “
Heat Flow Through Conical Constrictions
,”
AIAA J.
,
18
(
10
), pp.
1261
1262
.
14.
Sano
,
Y.
,
1985
, “
Effect of Space Angle on Constriction Resistance and Contact Resistance for a Point Contact
,”
J. Appl. Phys.
,
58
(
7
), pp.
2651
2654
.
15.
Das
,
A. K.
,
1994
, “
Thermal Constriction Resistance: Effects of Clustering, Random Distribution and Interstitial Fluid
,” Ph.D. thesis, University of Southern California, Los Angeles, CA.
16.
Das
,
A. K.
, and
Sadhal
,
S. S.
,
1998
, “
Analytical Solution for Constriction Resistance With Interstitial Fluid in the Gap
,”
Heat Mass Transfer
,
34
(
2–3
), pp.
111
119
.
17.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Muzychka
,
Y.
,
2013
, “
Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,”
ASME J. Heat Transfer
,
136
(
1
), p.
012402
.
18.
Sbragaglia
,
M.
, and
Prosperetti
,
A.
,
2007
, “
A Note on the Effective Slip Properties for Microchannel Flows With Ultrahydrophobic Surfaces
,”
Phys. Fluids
,
19
(
4
), pp.
1
8
.
19.
Steigerwalt Lam
,
L.
,
Hodes
,
M.
,
Karamanis
,
G.
,
Kirk
,
T.
, and
MacLachlan
,
S.
,
2016
, “
Effect of Meniscus Curvature on Apparent Thermal Slip
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122004
.
20.
Crowdy
,
D. G.
,
2017
, “
Perturbation Analysis of Subphase Gas and Meniscus Curvature Effects for Longitudinal Flows Over Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
822
(
19
), pp.
307
326
.
21.
Mayer
,
M.
,
2018
, “
Effect of Surface Curvature on Contact Resistance Between Abutting Cylinders
,” Ph.D. thesis, Tufts University, Medford, MA.
22.
Kirk
,
T. L.
,
Hodes
,
M.
, and
Papageorgiou
,
D. T.
,
2017
, “
Nusselt Numbers for Poiseuille Flow Over Isoflux Parallel Ridges Accounting for Meniscus Curvature
,”
J. Fluid Mech.
,
811
, pp.
315
349
.
23.
Game
,
S.
,
Hodes
,
M.
,
Kirk
,
T.
, and
Papageorgiou
,
D. T.
, 2018, “
Nusselt Numbers for Poiseuille Flow Over Isoflux Parallel Ridges for Arbitrary Meniscus Curvature
,”
ASME J. Heat Transfer
,
140
(8), p. 081701.
24.
Watson
,
G.
,
1966
,
A Treatise on the Theory of Bessel Functions
,
2nd ed.
,
Cambridge University Press
,
London
.
25.
Elbert
,
Á.
,
2001
, “
Some Recent Results on the Zeros of Bessel Functions and Orthogonal Polynomials
,”
J. Comput. Appl. Math.
,
133
(
1–2
), pp.
65
83
.
26.
Grigoriev
,
A.
,
2015
, “
Slope Angles of Rough Surface Asperities After Machining
,”
J. Frict. Wear
,
36
(
3
), pp.
197
199
.
27.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Clarendon Press
,
Oxford, UK
.
You do not currently have access to this content.