Particle-based heat transfer fluids for concentrated solar power (CSP) tower applications offer a unique advantage over traditional fluids, as they have the potential to reach very high operating temperatures. Gravity-driven dense granular flows through cylindrical tubes demonstrate potential for CSP applications and are the focus of the present study. The heat transfer capabilities of such a flow system were experimentally studied using a bench-scale apparatus. The effect of the flow rate and other system parameters on the heat transfer to the flow was studied at low operating temperatures (<200 °C), using the convective heat transfer coefficient and Nusselt number to quantify the behavior. For flows ranging from 0.015 to 0.09 m/s, the flow rate appeared to have negligible effect on the heat transfer. The effect of temperature on the flow's heat transfer capabilities was also studied, examining the flows at temperatures up to 1000 °C. As expected, the heat transfer coefficient increased with the increasing temperature due to enhanced thermal properties. Radiation did not appear to be a key contributor for the small particle diameters tested (approximately 300 μm in diameter) but may play a bigger role for larger particle diameters. The experimental results from all trials corroborate the observations of other researchers; namely, that particulate flows demonstrate inferior heat transfer as compared with a continuum flow due to an increased thermal resistance adjacent to the tube wall resulting from the discrete nature of the flow.

References

References
1.
Flamant
,
G.
,
Gauthier
,
D.
,
Benoit
,
H.
,
Sans
,
J. L.
,
Garcia
,
R.
,
Boissière
,
B.
,
Ansart
,
R.
, and
Hemati
,
M.
,
2013
, “
Dense Suspension of Solid Particles as a New Heat Transfer Fluid for Concentrated Solar Thermal Plants: On-Sun Proof of Concept
,”
Chem. Eng. Sci.
,
102
, pp.
567
576
.
2.
Ho
,
C. K.
,
Christian
,
J.
,
Yellowhair
,
J.
,
Jeter
,
S.
,
Golob
,
M.
,
Nguyen
,
C.
,
Repole
,
K.
,
Abdel-Khalik
,
S.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
El-Leathy
,
A.
, and
Gobereit
,
B.
,
2017
, “
Highlights of the High-Temperature Falling Particle Receiver Project: 2012–2016
,”
AIP Conf. Proc..
1850
, p.
030027
.
3.
Morris
,
A. B.
,
Ma
,
Z.
,
Pannala
,
S.
, and
Hrenya
,
C. M.
,
2016
, “
Simulations of Heat Transfer to Solid Particles Flowing Through an Array of Heated Tubes
,”
Sol. Energy
,
130
, pp.
101
115
.
4.
Van Antwerpen
,
W.
,
Du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2010
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
(
7
), pp.
1803
1818
.
5.
Brinn
,
M. S.
,
Friedmen
,
S. J.
, and
Gluckert
,
F. A.
,
1948
, “
Heat Transfer to Granular Materials
,”
Ind. Eng. Chem.
, 40(
6
), pp.
1050
1061
.
6.
Sullivan
,
W. N.
, and
Sabersky
,
R. H.
,
1975
, “
Heat Transfer to Flowing Granular Media
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
97
107
.
7.
Denloye
,
A. O. O.
, and
Botterill
,
J. S. M.
,
1977
, “
Heat Transfer in Flowing Packed Beds
,”
Chem. Eng. Sci.
,
32
(
5
), pp.
461
465
.
8.
Natarajan
,
V. V. R.
, and
Hunt
,
M. L.
,
1997
, “
Heat Transfer in Vertical Granular Flows
,”
Exp. Heat Transfer
,
10
(
2
), pp.
89
107
.
9.
Spelt
,
J. K.
,
Brennen
,
C. E.
, and
Sabersky
,
R. H.
,
1981
, “
Heat Transfer to Flowing Granular Material
,”
Int. J. Heat Mass Transfer
,
3
, pp.
791
796
.
10.
Patton
,
J. S.
,
Sabersky
,
R. H.
, and
Brennen
,
C. E.
,
1986
, “
Convective Heat Transfer to Rapidly Flowing, Granular Materials
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1263
1269
.
11.
Ahn
,
H.
,
Başaranoğlu
,
Z.
,
Yılmaz
,
M.
,
Buğutekin
,
A.
, and
Gül
,
M. Z.
,
2008
, “
Experimental Investigation of Granular Flow Through an Orifice
,”
Powder Technol.
,
186
(
1
), pp.
65
71
.
12.
Yagi
,
S.
, and
Kunii
,
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
AIChE J.
,
3
(
3
), pp.
373
381
.
13.
Cheng
,
G. J.
, and
Yu
,
A. B.
,
2013
, “
Particle Scale Evaluation of the Effective Thermal Conductivity From the Structure of a Packed Bed: Radiation Heat Transfer
,”
Ind. Eng. Chem. Res.
,
52
(
34
), pp.
12202
12211
.
14.
Beverloo
,
H. A.
,
Leniger
,
H. A. A.
, and
Van De Velde
,
J.
,
1961
, “
The Flow of Granular Solids Through Orifices
,”
Chem. Eng. Sci.
,
15
(
3–4
), pp.
260
269
.
15.
Chilamkurti
,
Y. N.
,
2016
, “
Experimental and Computational Studies of Gravity-Driven Dense Granular Flows
,” North Carolina State University, Raleigh, NC.
16.
Watkins
,
M.
,
2018
, “
A Heat Transfer Analysis of Vertical Dense Granular Flows
,” North Carolina State University, Raleigh, NC.
17.
Van Antwerpen
,
W.
,
Rousseau
,
P. G.
, and
Du Toit
,
C. G.
,
2012
, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Packed Pebble Beds of Mono-Sized Spheres
,”
Nucl. Eng. Des.
,
247
, pp.
183
201
.
18.
Specialty Products and Insulation
,
2014
, “
Mineral Wool Pipe Insulation
,” Lancaster, PA, accessed Jan. 2, 2019, http://www.spi-co.com/pdf/Mineral-Wool-Pipe-Insulation-Datasheet.pdf
19.
Engineering Toolbox, 2007, “
Mineral Wool Insulation
,” Engineering Toolbox, accessed Jan. 2, 2019, https://www.engineeringtoolbox.com/mineral-wool-insulation-k-values-d_815.html
20.
Morgan Thermal Ceramics, 2017, “Product Data Book,” JSA Creative, Windsor, Berkshire, accessed Jan. 2, 2019, http://www.morganthermalceramics.com/media/5454/morgan-advanced-materials_thermal-ceramics-product-data-book-e-version_2.pdf
21.
Chevoir
,
F.
,
Prochnow
,
M.
,
Moucheront
,
P.
,
da Cruz
,
F.
,
Bertrand
,
F.
,
Guilbaud
,
J.-P.
,
Coussot
,
P.
, and
Roux
,
J.-N.
,
2001
, “
Dense Granular Flows in a Vertical Chute
,”
Powders and Grains
,
Y.
Kishino
, ed., A.A. Balkema Publishers,
Sendai, Japan
, pp.
399
402
.
22.
Chilamkurti
,
Y. N.
, and
Gould
,
R. D.
,
2015
, “
Experimental and Computational Studies of Gravity-Driven Dense Granular Flows
,”
ASME
Paper No. IMECE2015-50762
.
23.
Chilamkurti
,
Y. N.
, and
Gould
,
R. D.
,
2016
, “
Discrete Element Studies of Gravity-Driven Dense Granular Flows in Vertical Cylindrical Tubes
,”
ASME
Paper No. POWER2016-59159
.
24.
High Temp Metals
,
2015
, “
Inconel 625 Technical Data
,” Sylmar, CA, accessed Jan. 2, 2019, http://www.hightempmetals.com/techdata/hitempInconel625data.php
25.
Muzychka
,
Y. S.
,
Walsh
,
E.
, and
Walsh
,
P.
,
2010
, “
Simple Models for Laminar Thermally Developing Slug Flow in Noncircular Ducts and Channels
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111702
.
You do not currently have access to this content.