For the steady-state heat transfer process, a fuzzy adaptive regularization method (FARM) is proposed to estimate the distributed thermal boundary condition in heat transfer system. First, the relationship model between temperatures at measurement points and parameters to be estimated is established based on sensitivity matrix. The regularization term is introduced into the least-squares objective function, and then the distributed thermal boundary condition is estimated by optimizing the new objective function. A fuzzy inference mechanism is developed to ensure the adaptive ability of FARM in which the regularization parameter is updated based on the residual norm between calculated and measured temperatures at measurement points and the norm of inversion parameters. Taking the plate heat conduction system and fluid–solid conjugate heat transfer system as research objects, the effects of the parameter distribution, the number of measurement points, and measurement errors on the inversion results are discussed by numerical experiments, and comparison with the classical regularization method is also conducted. Results indicate that FARM exhibits a good adaptive ability.

References

References
1.
Wang
,
G.
,
Luo
,
Z.
,
Zhu
,
L.
,
Chen
,
H.
, and
Zhang
,
L.
,
2012
, “
Fuzzy Estimation for Temperature Distribution of Furnace Inner Surface
,”
Int. J. Therm. Sci.
,
51
, pp.
84
90
.
2.
Huang
,
C.
,
Jan
,
U.
,
Li
,
R.
, and
Shih
,
A. J.
,
2007
, “
A Three-Dimensional Inverse Problem in Estimating the Applied Heat Flux of a Titanium Drilling—Theoretical and Experimental Studies
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3265
3277
.
3.
Zhang
,
L.
,
Tai
,
B. L.
,
Wang
,
G.
,
Zhang
,
K.
,
Sullivan
,
S.
, and
Shih
,
A. J.
,
2013
, “
Thermal Model to Investigate the Temperature in Bone Grinding for Skull Base Neurosurgery
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1391
1398
.
4.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
J. C. R.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
,
New York
.
5.
Huang
,
C.
, and
Huang
,
C.
,
2007
, “
An Inverse Problem in Estimating Simultaneously the Effective Thermal Conductivity and Volumetric Heat Capacity of Biological Tissue
,”
Appl. Math. Model.
,
31
(
9
), pp.
1785
1797
.
6.
Watson
,
G. A.
,
2007
, “
A Levenberg-Marquardt Method for Estimating Polygonal Regions
,”
J. Comput. Appl. Math.
,
208
(
2
), pp.
331
340
.
7.
Zhu
,
L.
,
Wang
,
G.
, and
Chen
,
H.
,
2011
, “
Estimating Steady Multi-Variables Inverse Heat Conduction Problem by Using Conjugate Gradient Method
,”
Proc. CSEE
,
31
(8), pp.
58
61
(in Chinese).
8.
Parwani
,
A. K.
,
Talukdar
,
P.
, and
Subbarao
,
P. M. V.
,
2014
, “
Estimation of Transient Boundary Flux for a Developing Flow in a Parallel Plate Channel
,”
Int. J. Numer. Method Heat Fluid Flow
,
24
, pp.
522
544
.
9.
Tikhonov
,
A. N.
,
1963
,
Regularition of Incorrectly Posed Problems
,
Doklady Akademii Nauk Sssr
,
Moskva, Russia
.
10.
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2013
, “
Estimation Metrics and Optimal Regularization in a Tikhonov Digital Filter for the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
62
, pp.
31
39
.
11.
Hong
,
Y. K.
, and
Baek
,
S. W.
,
2006
, “
Inverse Analysis for Estimating the Unsteady Inlet Temperature Distribution for Two-Phase Laminar Flow in a Channel
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1137
1147
.
12.
Calvetti
,
D.
,
Morigi
,
S.
,
Reichel
,
L.
, and
Sgallari
,
F.
,
2000
, “
Tikhonov Regularization and the L-Curve for Large Discrete Ill-Posed Problems
,”
J. Comput. Appl. Math.
,
123
(
1–2
), pp.
423
446
.
13.
Engl
,
H. W.
, and
Grever
,
W.
,
1994
, “
Using the L-Curve for Determining Optimal Regularization Parameters
,”
Numer. Math.
,
69
(
1
), pp.
25
31
.
14.
Morozov
,
V. A.
,
1984
,
Methods for Solving Incorrectly Posed Problems
,
Springer
,
New York
.
15.
Bakushinsky
,
A.
, and
Goncharsky
,
A.
,
1994
,
Ill-Posed Problems: Theory and Applications
,
Kluwer Academic Publishers
,
Dororecht, The Netherlands
.
16.
Garshasbi
,
M.
, and
Hassani
,
F.
,
2016
, “
Boundary Temperature Reconstruction in an Inverse Heat Conduction Problem Using Boundary Integral Equation Method
,”
Bull. Iran. Math. Soc.
,
42
(5), pp.
1039
1056
.https://www.researchgate.net/publication/310615704_Boundary_temperature_reconstruction_in_an_inverse_heat_conduction_problem_using_boundary_integral_equation_method
17.
Mobtil
,
M.
,
Bougeard
,
D.
, and
Solliec
,
C.
,
2014
, “
Inverse Determination of Convective Heat Transfer Between an Impinging Jet and a Continuously Moving Flat Surface
,”
Int. J. Heat Fluid Fl.
,
50
, pp.
83
94
.
18.
Reichel
,
L.
, and
Sadok
,
H.
,
2008
, “
A New L-Curve for Ill-Posed Problems
,”
J. Comput. Appl. Math.
,
219
(
2
), pp.
493
508
.
19.
Hanke
,
M.
,
1996
, “
Limitations of the L-Curve Method in Ill-Posed Problems
,”
BIT
,
36
(
2
), pp.
287
301
.
20.
Vogel
,
C. R.
,
1996
, “
Non-Convergence of the L-Curve Regularization Parameter Selection Method
,”
Inverse Probl.
,
12
(
4
), pp.
535
547
.
21.
Klir
,
G. J.
, and
Yuan
,
B.
,
1995
,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
,
Prentice Hall
,
Upper Saddle River, NJ
.
22.
Sargolzaei
,
J.
,
Khoshnoodi
,
M.
,
Saghatoleslami
,
N.
, and
Mousavi
,
M.
,
2008
, “
Fuzzy Inference System to Modeling of Crossflow Milk Ultrafiltration
,”
Appl. Soft Comput.
,
8
(
1
), pp.
456
465
.
23.
Van Broekhoven
,
E.
, and
De Baets
,
B.
,
2006
, “
Fast and Accurate Center of Gravity Defuzzification of Fuzzy System Outputs Defined on Trapezoidal Fuzzy Partitions
,”
Fuzzy Set. Syst.
,
157
(
7
), pp.
904
918
.
24.
MathWorks, 2018, “Fuzzy Logic Toolboxm” MathWorks, Inc., Natick, MA, accessed Oct. 15, 2018, https://www.mathworks.com/products/fuzzy-logic.html
You do not currently have access to this content.