Theoretical understanding of phase change heat transfer problems is of much interest for multiple engineering applications. Exact solutions for phase change heat transfer problems are often not available, and approximate analytical methods are needed to be used. This paper presents a solution for a one-dimensional (1D) phase change problem with time-dependent heat flux boundary condition using the perturbation method. Two different expressions for propagation of the phase change front are derived. For the special case of constant heat flux, the present solution is shown to offer key advantages over past papers. Specifically, the present solution results in greater accuracy and does not diverge at large times unlike past results. The theoretical result is used for understanding the nature of phase change propagation for linear and periodic heat flux boundary conditions. In addition to improving the theoretical understanding of phase change heat transfer problems, these results may contribute toward design of phase change based thermal management for a variety of engineering applications, such as cooling of Li-ion batteries.

References

References
1.
Viskanta
,
R.
,
1988
, “
Heat Transfer During Melting and Solidification of Metals
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1205
1219
.
2.
Fukusako
,
S.
, and
Seki
,
N.
,
1987
, “
Fundamental Aspects of Analytical and Numerical Methods on Freezing and Melting Heat-Transfer Problems
,”
Annu. Rev. Heat Transfer
,
1
(
1
), pp.
351
402
.
3.
Cheng
,
K. C.
, and
Seki
,
N.
, eds.,
1991
,
Freezing and Melting Heat Transfer in Engineering: Selected Topics on Ice-Water Systems and Welding and Casting Processes
,
CRC Press
, Boca Raton, FL.
4.
Stefan
,
J.
,
1891
, “
Uber Die Theorie Des Eisbildung, Insbesonder Uber Die Eisbildung im Polarmere
,”
Ann. Phys.
,
42
(
2
), pp.
269
286
.
5.
Hahn
,
D. W.
, and
Özişik
,
M. N.
,
2012
,
Heat Conduction
,
3rd ed.
,
Wiley
,
Hoboken, NJ
.
6.
Ruehr
,
O. G.
,
2002
, “
Analytical-Numerical Treatment of the One-Phase Stefan Problem With Constant Applied Heat Flux
,” Integral Methods in Science and Engineering, Birkhäuser, Boston, MA, pp.
215
220
.
7.
Cho
,
S. H.
, and
Sunderland
,
J. E.
,
1981
, “
Approximate Temperature Distribution for Phase Change of a Semi-Infinite Body
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
401
403
.
8.
Gutman
,
L. N.
,
1986
, “
On the Problem of Heat Transfer in Phase-Change Materials for Small Stefan Numbers
,”
Int. J. Heat Mass Transfer
,
29
(
6
), pp.
921
926
.
9.
Tao
,
L. N.
,
1979
, “
On Free Boundary Problems With Arbitrary Initial and Flux Conditions
,”
Z. Angew. Math. Phys.
,
30
(
3
), pp.
416
426
.
10.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1986
,
Conduction of Heat in Solids
,
Oxford Science Publications
.
11.
Evans
,
G. W.
,
Isaacson
,
E.
, and
MacDonald
,
J. K. L.
,
1950
, “
Stefan-Like Problems
,”
Q. Appl. Math.
,
8
(
3
), pp.
312
319
.
12.
Szekely
,
J.
, and
Stanek
,
V.
,
1970
, “
Natural Convection Transients and Their Effects on Unconditional Solidification
,”
Metall. Trans.
,
1
(
1
), pp.
2243
2251
.
13.
Cole
,
G. S.
, and
Winegard
,
W. C.
,
1962
, “
Thermal Convection Ahead of a Solid-Liquid Interface
,”
Can. Metall. Q.
,
1
(
1
), pp.
29
31
.
14.
Lock
,
G.
,
Gunderson
,
J.
,
Quon
,
D.
, and
Donnelly
,
J.
,
1969
, “
A Study of One-Dimensional Ice Formation With Particular Reference to Periodic Growth and Decay
,”
Int. J. Heat Mass Transfer
,
12
(
11
), pp.
1343
1352
.
15.
Caldwell
,
J.
, and
Kwan
,
Y.
,
2003
, “
On the Perturbation Method for the Stefan Problem With Time-Dependent Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1497
1501
.
16.
Tao
,
L. N.
,
1978
, “
The Stefan Problem With Arbitrary Initial and Boundary Conditions
,”
Q. Appl. Math.
,
36
(
3
), pp.
223
233
.
17.
Tien
,
R. T.
,
1965
, “
Freezing of Semi-Infinite Slab With Time Dependent Surface Temperature—An Extension of Neumann's Solution
,”
Trans. AIME
,
233
, pp.
1887
1891
.
18.
Mori
,
A.
, and
Araki
,
K.
,
1976
, “
Methods for Analysis of the Moving Boundary-Surface Problem
,”
J. Math. Anal. Appl.
,
16
(
4
), pp.
734
744
.
19.
Goodman
,
T. R.
,
1958
, “
The Heat Balance Integral and Its Application to Problems Involving Change of Phase
,”
'Trans. ASME
,
80
(
2
), pp.
335
342
.
20.
Cannon
,
J.
, and
Primicerio
,
M.
,
1971
, “
Remarks on the One-Phase Stefan Problem for the Heat Equation With the Flux Prescribed on the Fixed Boundary
,”
J. Math. Anal. Appl.
,
35
(
2
), pp.
361
373
.
21.
Kyner
,
W.
,
1959
, “
An Existence and Uniqueness Theorem for a Nonlinear Stefan Problem
,”
Indiana Univ. Math. J.
,
8
(
4
), pp.
483
498
.
22.
Shah
,
K.
,
Vishwakarma
,
V.
, and
Jain
,
A.
,
2016
, “
Measurement of Multiscale Thermal Transport Phenomena in Li-Ion Cells: A Review
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
030801
.
23.
Ling
,
Z.
,
Zhang
,
Z.
,
Shi
,
G.
,
Fang
,
X.
,
Wang
,
L.
,
Gao
,
X.
,
Fang
,
Y.
,
Xu
,
T.
,
Wang
,
S.
, and
Liu
,
X.
,
2014
, “
Review on Thermal Management Systems Using Phase Change Materials for Electronic Components, Li-Ion Batteries and Photovoltaic Modules
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
427
438
.
24.
Anthony
,
D.
,
Wong
,
D.
,
Wetz
,
D.
, and
Jain
,
A.
,
2017
, “
Non-Invasive Measurement of Internal Temperature of a Cylindrical Li-Ion Cell During High-Rate Discharge
,”
Int. J. Heat Mass Transfer
,
111
, pp.
223
231
.
You do not currently have access to this content.