An investigation is made to study the Blasius flow of a nanofluid in the presence of homogeneous–heterogeneous chemical reactions. Here, the diffusion coefficients of the reactant and autocatalyst are considered to be in comparable sizes. The Buongiorno's mathematical model is applied in describing the behavior of nanofluids. Multiple solutions of the steady-state system of nonlinear ordinary differential equations are obtained. Results show that nanofluids significantly participate in the transport mechanism of the homogeneous–heterogeneous reactions, which play different roles in the procedures of homogeneous and heterogeneous reactions.

References

References
1.
Williams
,
W. R.
,
Stenzel
,
M. T.
,
Song
,
X.
, and
Schmidt
,
L. D.
,
1991
, “
Bifurcation Behavior in Homogeneous-Heterogeneous Combustion. I. Experimental Results Over Platinum
,”
Combust. Flame
,
84
(
3–4
), pp.
277
291
.
2.
Williams
,
W. R.
,
Zhao
,
J.
, and
Schmidt
,
L. D.
,
1991
, “
Ignition and Extinction of Surface and Homogeneous Oxidation of NH3 and CH4
,”
AIChE. J.
,
37
(
5
), pp.
641
649
.
3.
Merkin
,
J. H.
,
1996
, “
A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow
,”
Mathl. Comput. Modell.
,
24
(
8
), pp.
125
136
.
4.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—I: Equal Diffusivities
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
311
333
.
5.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—II: Different Diffusivities for Reactant and Autocatalyst
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
335
359
.
6.
Abbas
,
Z.
,
Sheikh
,
M.
, and
Pop
,
I.
,
2015
, “
Stagnation-Point Flow of a Hydromagnetic Viscous Fluid Over Stretching/Shrinking Sheet With Generalized Slip Condition in the Presence of Homogeneous-Heterogeneous Reactions
,”
J. Taiwan Inst. Chem. Eng.
,
55
, pp.
69
75
.
7.
Abbas
,
Z.
, and
Sheikh
,
M.
,
2017
, “
Numerical Study of Homogeneous-Heterogeneous Reactions on Stagnation Point Flow of Ferrofluid With Non-Linear Slip Condition
,”
Chin. J. Chem. Eng.
,
25
(
1
), pp.
11
17
.
8.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
On the Stagnation-Point Flow Towards a Stretching Sheet With Homogeneous-Heterogeneous Reactions Effects
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4296
4302
.
9.
Rana
,
S.
,
Mehmood
,
R.
, and
Akbar
,
N. S.
,
2016
, “
Mixed Convective Oblique Flow of a Casson Fluid With Partial Slip, Internal Heating and Homogeneous-Heterogeneous Reactions
,”
J. Mol. Liq.
,
222
, pp.
1010
1019
.
10.
Sajid
,
M.
,
Iqbal
,
S. A.
,
Naveed
,
M.
, and
Abbas
,
Z.
,
2017
, “
Effect of Homogeneous-Heterogeneous Reactions and Magnetohydrodynamics on Fe3O4 Nanofluid for the Blasius Flow With Thermal Radiations
,”
J. Mol. Liq.
,
233
, pp.
115
121
.
11.
Khana
,
M. I.
,
Hayat
,
T.
,
Khan
,
M. I.
, and
Alsaedi
,
A.
,
2017
, “
A Modified Homogeneous-Heterogeneous Reactions for MHD Stagnation Flow With Viscous Dissipation and Joule Heating
,”
Int. J. Heat Mass Transfer
,
113
, pp.
310
317
.
12.
Xu
,
H.
,
2017
, “
A Homogeneous-Heterogeneous Reaction Model for Heat Fluid Flow in the Stagnation Region of a Plane Surface
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
112
117
.
13.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
14.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds., American Society of Mechanical Engineers, New York, pp.
99
105
.
15.
Kameswaran
,
P. K.
,
Shaw
,
S.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Homogeneous-Heterogeneous Reactions in a Nanofluid Flow Due to a Porous Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
465
472
.
16.
Hayat
,
T.
,
Hussain
,
Z.
,
Muhammad
,
T.
, and
Alsaedi
,
N. A.
,
2016
, “
Effects of Homogeneous and Heterogeneous Reactions in Flow of Nanofluids Over a Nonlinear Stretching Surface With Variable Surface Thickness
,”
J. Mol. Liq.
,
221
, pp.
1121
1127
.
17.
Zhang
,
C.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Chen
,
G.
,
2015
, “
MHD Flow and Radiation Heat Transfer of Nanofluids in Porous Media With Variable Surface Heat Flux and Chemical Reaction
,”
Appl. Math. Model.
,
39
(
1
), pp.
165
181
.
18.
Zhao
,
Q. K.
,
Xu
,
H.
, and
Tao
,
L. B.
,
2016
, “
Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow of a Nanofluid Near the forward stagnation point of a cylinder
,”
ASME J. Heat Transfer
,
139
(
3
), p.
034502
.
19.
Naveed
,
M.
,
Abbas
,
Z.
, and
Sajid
,
M.
,
2016
, “
Thermophoresis and Brownian Effects on the Blasius Flow of a Nanofluid Due to a Curved Surface With Thermal Radiation
,”
Eur. Phys. J. Plus
,
131
, p.
214
.
20.
Naveed
,
M.
,
Abbas
,
Z.
, and
Sajid
,
M.
,
2017
, “
Nonlinear Radiative Heat Transfer in Blasius and Sakiadis Flows over a Curved Surface
,”
Int. J. Thermophys.
,
38
, p.
14
.
21.
Liao
,
S. J.
,
1999
, “
An Explicit, Totally Analytic Approximate Solution for Blasius Viscous Flow Problems
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
759
778
.
22.
Mohammadi
,
F.
,
Hosseini
,
M. M.
,
Dehgahn
,
A.
, and
Maalek Ghaini
,
F. M.
,
2012
, “
Numerical Solutions of Falkner-Skan Equation With Heat Transfer
,”
Stud. Nonlinear Sci.
,
3
, pp.
86
93
.
You do not currently have access to this content.