With today's computational capabilities, it has become possible to conduct line-by-line (LBL) accurate radiative heat transfer calculations in spectrally highly nongray combustion systems using the Monte Carlo method. In these calculations, wavenumbers carried by photon bundles must be determined in a statistically meaningful way. The wavenumbers for the emitting photons are found from a database, which tabulates wavenumber–random number relations for each species. In order to cover most conditions found in industrial practices, a database tabulating these relations for CO2, H2O, CO, CH4, C2H4, and soot is constructed to determine emission wavenumbers and absorption coefficients for mixtures at temperatures up to 3000 K and total pressures up to 80 bar. The accuracy of the database is tested by reconstructing absorption coefficient spectra from the tabulated database. One-dimensional test cases are used to validate the database against analytical LBL solutions. Sample calculations are also conducted for a luminous flame and a gas turbine combustion burner. The database is available from the author's website upon request.

References

References
1.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
3rd ed.
,
Academic Press
,
New York
.
2.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME J. Heat Transfer
,
86
(
1
), pp.
116
122
.
3.
Modest
,
M. F.
,
1992
, “
The Monte Carlo Method Applied to Gases With Spectral Line Structure
,”
Numer. Heat Transfer—Part B: Fundamentals
,
22
(
3
), pp.
273
284
.
4.
Cherkaoui
,
M.
,
Dufresne
,
J.-L.
,
Fournier
,
R.
,
Grandpeix
,
J.-Y.
, and
Lahellec
,
A.
,
1996
, “
Monte Carlo Simulation of Radiation in Gases With a Narrow-Band Model and a Net-Exchange Formulation
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
401
407
.
5.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1994
, “
Monte Carlo Prediction of Radiative Heat Transfer in Inhomogeneous, Anisotropic, Nongray Media
,”
J. Thermophys. Heat Transfer
,
8
(
1
), pp.
133
139
.
6.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
, Vol.
31
,
Hartnett
,
J. P.
and
Irvine
,
T. F.
, eds.,
Academic Press
,
New York
.
7.
Wang
,
L.
,
Yang
,
J.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2007
, “
Application of the Full-Spectrum k-Distribution Method to Photon Monte Carlo Solvers
,”
J. Quant. Spectrosc. Radiat. Transfer
,
104
(
2
), pp.
297
304
.
8.
Tang
,
K. C.
, and
Brewster
,
M. Q.
,
1999
, “
Analysis of Molecular Gas Radiation: Real Gas Property Effects
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
460
466
.
9.
Wang
,
A.
, and
Modest
,
M. F.
,
2007
, “
Spectral Monte Carlo Models for Nongray Radiation Analyses in Inhomogeneous Participating Media
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3877
3889
.
10.
Wang
,
A.
,
Modest
,
M. F.
,
Haworth
,
D. C.
, and
Wang
,
L.
,
2008
, “
Monte Carlo Simulation of Radiative Heat Transfer and Turbulence Interactions in Methane/Air Jet Flames
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
269
279
.
11.
Mehta
,
R. S.
,
Haworth
,
D. C.
, and
Modest
,
M. F.
,
2009
, “
An Assessment of Gas-Phase Reaction Mechanisms and Soot Models for Laminar Atmospheric-Pressure Ethylene–Air Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1327
1334
.
12.
Mehta
,
R. S.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2010
, “
Radiation Characteristics and Turbulence–Radiation Interactions in Sooting Turbulent Jet Flames
,”
Combust. Theory Modell.
,
14
(
1
), pp.
105
124
.
13.
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
Hybrid Wavenumber Selection Scheme for Line-by-Line Photon Monte Carlo Simulations in High-Temperature Gases
,”
ASME J. Heat Transfer
,
135
(
8
), p.
084501
.
14.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.
15.
Zhao
,
X. Y.
,
Haworth
,
D. C.
,
Ren
,
T.
, and
Modest
,
M. F.
,
2013
, “
A Transported Probability Density Function/Photon Monte Carlo Method for High-Temperature Oxy–Natural Gas Combustion With Spectral Gas and Wall Radiation
,”
Combust. Theory and Model.
,
17
(
2
), pp.
354
381
.
16.
Cai
,
J.
,
Lei
,
S.
,
Dasgupta
,
A.
,
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2014
, “
High Fidelity Radiative Heat Transfer Models for High-Pressure Laminar Hydrogen–Air Diffusion Flames
,”
Combust. Theory Modell.
,
18
(
6
), pp.
607
626
.
17.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barbe
,
A.
,
Benner
,
D. C.
,
Bernath
,
P. F.
,
Birk
,
M.
,
Boudon
,
V.
,
Brown
,
L. R.
,
Campargue
,
A.
,
Champion
,
J.-P.
,
Chance
,
K.
,
Coudert
,
L. H.
,
Dana
,
V.
,
Devi
,
V. M.
,
Fally
,
S.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Jacquemart
,
D.
,
Kleiner
,
I.
,
Lacome
,
N.
,
Lafferty
,
W. J.
,
Mandin
,
J.-Y.
,
Massie
,
S. T.
,
Mikhailenko
,
S. N.
,
Miller
,
C. E.
,
Moazzen-Ahmadi
,
N.
,
Naumenko
,
O. V.
,
Nikitin
,
A. V.
,
Orphal
,
J.
,
Perevalov
,
V. I.
,
Perrin
,
A.
,
Predoi-Cross
,
A.
,
Rinsland
,
C. P.
,
Rotger
,
M.
,
Simeckova
,
M.
,
Smith
,
M. A. H.
,
Sung
,
K.
,
Tashkun
,
S. A.
,
Tennyson
,
J.
,
Toth
,
R. A.
,
Vandaele
,
A. C.
, and
Auwera
,
J. V.
,
2009
, “
The HITRAN 2008 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
9–10
), pp.
533
572
.
18.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Babikov
,
Y.
,
Barbe
,
A.
,
Benner
,
D. C.
,
Bernath
,
P. F.
,
Birk
,
M.
,
Bizzocchi
,
L.
,
Boudon
,
V.
,
Brown
,
L. R.
,
Campargue
,
A.
,
Chance
,
K.
,
Cohen
,
E. A.
,
Coudert
,
L. H.
,
Devi
,
V. M.
,
Drouin
,
B. J.
,
Fayt
,
A.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Harrison
,
J. J.
,
Hartmann
,
J.-M.
,
Hill
,
C.
,
Hodges
,
J. T.
,
Jacquemart
,
D.
,
Jolly
,
A.
,
Lamouroux
,
J.
,
Le Roy
,
R. J.
,
Li
,
G.
,
Long
,
D. A.
,
Lyulin
,
O. M.
,
Mackie
,
C. J.
,
Massie
,
S. T.
,
Mikhailenko
,
S.
,
Müller
,
H. S. P.
,
Naumenko
,
O. V.
,
Nikitin
,
A. V.
,
Orphal
,
J.
,
Perevalov
,
V.
,
Perrin
,
A.
,
Polovtseva
,
E. R.
,
Richard
,
C.
,
Smith
,
M. A. H.
,
Starikova
,
E.
,
Sung
,
K.
,
Tashkun
,
S.
,
Tennyson
,
J.
,
Toon
,
G. C.
,
Tyuterev
,
Vl. G.
, and
Wagner
,
G.
,
2013
, “
The HITRAN2012 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
130
, pp.
4
50
.
19.
Tashkun
,
S. A.
, and
Perevalov
,
V. I.
,
2008
, “
Carbon Dioxide Spectroscopic Databank (CDSD): Updated and Enlarged Version for Atmospheric Applications
,”
Tenth HITRAN Conference
, Cambridge, MA, Paper No. T2.3.
20.
Tashkun
,
S. A.
, and
Perevalov
,
V. I.
,
2011
, “
CDSD-4000: High-Resolution, High-Temperature Carbon Dioxide Spectroscopic Databank
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
9
), pp.
1403
1410
.
21.
Modest
,
M. F.
, and
Bharadwaj
,
S. P.
,
2002
, “
High-Resolution, High-Temperature Transmissivity Measurements and Correlations for Carbon Dioxide–Nitrogen Mixtures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
329
338
.
22.
Bharadwaj
,
S. P.
, and
Modest
,
M. F.
,
2007
, “
Medium Resolution Transmission Measurements of CO2 at High Temperature—An Update
,”
J. Quant. Spectrosc. Radiat. Transfer
,
103
(
1
), pp.
146
155
.
23.
Evseev
,
V.
,
Fateev
,
A.
, and
Clausen
,
S.
,
2012
, “
High-Resolution Transmission Measurements of CO2 at High Temperatures for Industrial Applications
,”
J. Quant. Spectrosc. Radiat. Transfer
,
113
(
17
), pp.
2222
2233
.
24.
Bharadwaj
,
S. P.
,
Modest
,
M. F.
, and
Riazzi
,
R. J.
,
2006
, “
Medium Resolution Transmission Measurements of Water Vapor at High Temperature
,”
ASME J. Heat Transfer
,
128
(
4
), pp.
374
381
.
25.
Fateev
,
A.
, and
Clausen
,
S.
,
2008
,
On-Line Non-Contact Gas Analysis
,
Danmarks Tekniske Universitet Risø Nationallaboratoriet for Bæredygtig Energi
,
Roskilde, Kingdom of Denmark
.
26.
Christiansen
,
C.
,
Stolberg-Rohr
,
T.
,
Fateev
,
A.
, and
Clausen
,
S.
,
2016
, “
High Temperature and High Pressure Gas Cell for Quantitative Spectroscopic Measurements
,”
J. Quant. Spectrosc. Radiat. Transfer
,
169
, pp.
96
103
.
27.
Wang
,
A.
,
2007
, “
Investigation of Turbulence–Radiation Interactions in Turbulent Flames Using a Hybrid FVM/Particle-Photon Monte Carlo Approach
,”
Ph.D. thesis
, The Pennsylvania State University, University Park, PA.https://etda.libraries.psu.edu/files/final_submissions/449
28.
Modest
,
M. F.
, and
Haworth
,
D. C.
,
2016
,
Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications
, Springer, New York.
29.
Chang
,
H.
, and
Charalampopoulos
,
T. T.
,
1990
, “
Determination of the Wavelength Dependence of Refractive Indices of Flame Soot
,”
Proc. R. Soc. (London) A
,
430
(
1880
), pp.
577
591
.
30.
Mehta
,
R. S.
,
2008
, “
Detailed Modelling of Soot Formation and Turbulence-Radiation Interactions in Turbulent Jet Flmaes
,”
Ph.D. thesis
, The Pennsylvania State University, University Park, PA.https://etda.libraries.psu.edu/files/final_submissions/5319
31.
Siemens
,
A. G.
,
2005
, “
SGT-100 Industrial Gas Turbine
,” Technical Report, Siemans AG, Munich, Germany, accessed Oct. 13, 2017, https://www.siemens.com/global/en/home/products/energy/power-generation/gas-turbines/sgt-100.html#!/
32.
Igoe
,
B. M.
,
2011
, “
Dry Low Emissions Experience Across the Range of Siemens Small Industrial Gas Turbines
,”
Siemens Industrial Turbomachinery Limited
, Lincoln, UK.https://www.energy.siemens.com/nl/pool/hq/energy-topics/pdfs/en/techninal%20paper/Dry%20Low%20Emissions%20Experience.pdf
33.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.
34.
Stopper
,
U.
,
Aigner
,
M.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Kim
,
I. S.
,
2009
, “
Flow Field and Combustion Characterization of Premixed Gas Turbine Flames by Planar Laser Techniques
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021504
.
35.
Stopper
,
U.
,
Aigner
,
M.
,
Ax
,
H.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Bonaldo
,
A.
,
2010
, “
PIV, 2D-LIF and 1D-Raman Measurements of Flow Field, Composition and Temperature in Premixed Gas Turbine Flames
,”
Exp. Therm. Fluid Sci.
,
34
(
3
), pp.
396
403
.
36.
Bulat
,
G.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2013
, “
Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3155
3164
.
37.
Bulat
,
G.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2014
, “
NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method
,”
Combust. Flame
,
161
(
7
), pp.
1804
1825
.
38.
Abou-Taouk
,
A.
,
Sadasivuni
,
S.
,
Lörstad
,
D.
,
Ghenadie
,
B.
, and
Eriksson
,
L.
,
2015
, “
CFD Analysis and Application of Dynamic Mode Decomposition for Resonant-Mode Identification and Damping in an SGT-100 DLE Combustion System
,”
Seventh European Combustion Meeting
, Budapest, Hungary, Mar. 30–Apr. 2, pp. 4–46.https://www.researchgate.net/publication/274318069_CFD_analysis_and_application_of_dynamic_mode_decomposition_for_resonant-mode_identification_and_damping_in_an_SGT-100_DLE_combustion_system
39.
Bulat
,
G.
,
Fedina
,
E.
,
Fureby
,
C.
,
Meier
,
W.
, and
Stopper
,
U.
,
2015
, “
Reacting Flow in an Industrial Gas Turbine Combustor: LES and Experimental Analysis
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3175
3183
.
40.
Bulat
,
G.
,
Jones
,
W. P.
, and
Navarro-Martinez
,
S.
,
2015
, “
Large Eddy Simulations of Isothermal Confined Swirling Flow in an Industrial Gas-Turbine
,”
Int. J. Heat Fluid Flow
,
51
, pp.
50
64
.
41.
Abou-Taouk
,
A.
,
Farcy
,
B.
,
Domingo
,
P.
,
Vervisch
,
L.
,
Sadasivuni
,
S.
, and
Eriksson
,
L.-E.
,
2016
, “
Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine
,”
Combust. Sci. Technol.
,
188
(
1
), pp.
21
39
.
42.
Ren
,
T.
,
Modest
,
M. F.
, and
Roy
,
S.
,
2018
, “
Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051503
.
43.
Sabel'Nikov
,
V. A.
, and
da Silva
,
L. F. F.
,
2002
, “
Partially Stirred Reactor: Study of the Sensitivity of the Monte Carlo Simulation to the Number of Stochastic Particles With the Use of a Semi-Analytic, Steady-State, Solution to the PDF Equation
,”
Combust. Flame
,
129
(
1–2
), pp.
164
178
.
44.
OpenCFD, 2013, “
Version2.2.x, OpenFOAM Website
,” OpenCFD Ltd., Bracknell, UK, accessed Oct. 13, 2017, https://github.com/OpenFOAM/OpenFOAM-2.2.x
You do not currently have access to this content.