Numerical simulations are carried out for fluid flow and natural convection heat transfer induced by a temperature difference between a hot inner cylinder with different geometries (i.e., circular; triangular; elliptic; rectangular; and rhombic) and a cold outer square enclosure filled with nanofluid superposed porous-nanofluid layers. The Darcy–Brinkman model is applied for the saturated porous layer with nanofluid. Moreover, the transport equations (mass, momentum, and energy) are solved numerically using the Galerkin weighted residual method by dividing the domain into two sets of equations for every layer with incorporating a nonuniform mesh size. The considered domains in this investigation are closely examined over a wide range of Rayleigh number (103 ≤ Ra ≤ 106), Darcy number (10−5 ≤ Da ≤ 10−1), the thickness of porous layer (0% ≤ Xp ≤ 100%), thermal conductivity ratio (1 ≤ Rk ≤ 20), and nanoparticle volume fraction (0 ≤ φ ≤ 0.1), respectively. The nanofluid is considered to be composed of Ag-nanoparticle and water as a base fluid. The results showed that the obtained total surfaces-averaged Nusselt numbers of the enclosure, in all cases, at the same operating conditions, the rate of heat transfer from the outer enclosure which the triangular cylinder is located inside is better. Also, as the thickness of the porous layer is increased from 20% to 80%, the free convection performance will decrease significantly (to about 50%) due to the hydrodynamic properties of the porous material.

References

References
1.
Kahwaji
,
G.
, and
Ali
,
O. M.
,
2015
, “
Numerical Investigation of Natural Convection Heat Transfer From Square Cylinder in an Enclosed Enclosure Filled With Nanofluids
,”
Int. J. Recent Adv. Mech. Eng.
,
4
(
4
), pp.
1
17
.http://scholarworks.rit.edu/article/1788
2.
Munshi
,
M. J. H.
,
Bhuiyan
,
A. H.
, and
Alim
,
M. A.
,
2015
, “
A Numerical Study of Natural Convection in a Square Enclosure With Non-Uniformly Heated Bottom Wall and Square Shape Heated Block
,”
Am. J. Eng. Res. (AJER)
,
4
(
5
), pp.
124
137
.
3.
De
,
A. K.
, and
Dalal
,
A.
,
2006
, “
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4608
4623
.
4.
Chamkha
,
A. J.
,
Hussain
,
S. H.
, and
Abd-Amer
,
Q. R.
,
2011
, “
Mixed Convection Heat Transfer of Air Inside a Square Vented Cavity With a Heated Horizontal Square Cylinder
,”
Numer. Heat Transfer, Part A
,
59
(
1
), pp.
58
79
.
5.
Lu
,
J.
,
Shi
,
B.
,
Guo
,
Z.
, and
Chai
,
Z.
,
2009
, “
Numerical Study on Natural Convection in a Square Enclosure Containing a Rectangular Heated Cylinder
,”
Energy Power Eng.
,
3
(
4
), pp.
373
380
.
6.
Siavashi
,
M.
,
Bordbar
,
V.
, and
Rahnama
,
P.
,
2017
, “
Heat Transfer and Entropy Generation Study of Non-Darcy Double-Diffusive Natural Convection in Inclined Porous Enclosures With Different Source Configurations
,”
Appl. Therm. Eng.
,
110
, pp.
1462
1475
.
7.
El Abdallaoui
,
M.
,
Hasnaoui
,
M.
, and
Amahmid
,
A.
,
2015
, “
Numerical Simulation of Natural Convection Between a Decentered Triangular Heating Cylinder and a Square Outer Cylinder Filled With a Pure Fluid or a Nanofluid Using the Lattice Boltzmann Method
,”
Powder Technol.
,
277
, pp.
193
205
.
8.
Yu
,
Z.-T.
,
Fan
,
L.-W.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2010
, “
Prandtl Number Dependence of Laminar Natural Convection Heat Transfer in a Horizontal Cylindrical Enclosure With an Inner Coaxial Triangular Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1333
1340
.
9.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Vajravelu
,
K.
,
2015
, “
Lattice Boltzmann Simulation of Magnetohydrodynamic Natural Convection Heat Transfer of Al2O3-Water Nanofluid in a Horizontal Cylindrical Enclosure With an Inner Triangular Cylinder
,”
Int. J. Heat Mass Transfer
,
80
, pp.
16
25
.
10.
Mehrizi
,
A. A.
,
Farhadi
,
M.
, and
Shayamehr
,
S.
,
2013
, “
Natural Convection Flow of Cu-Water Nanofluid in Horizontal Cylindrical Annuli With Inner Triangular Cylinder Using Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
147
156
.
11.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1888
1906
.
12.
Yoon
,
H. S.
,
Ha
,
M. Y.
,
Kim
,
B. S.
, and
Yu
,
D. H.
,
2009
, “
Effect of the Position of a Circular Cylinder in a Square Enclosure on Natural Convection at Rayleigh Number of 107
,”
Phys. Fluids
,
21
(
4
), p.
047101
.
13.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2010
, “
Numerical Investigation of Natural Convection Phenomena in a Uniformly Heated Circular Cylinder Immersed in Square Enclosure Filled With Air at Different Vertical Locations
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1115
1126
.
14.
Lee
,
J. M.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2010
, “
Natural Convection in a Square Enclosure With a Circular Cylinder at Different Horizontal and Diagonal Locations
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5905
5919
.
15.
Seo
,
Y. M.
,
Doo
,
J. H.
, and
Ha
,
M. Y.
,
2016
, “
Three-Dimensional Flow Instability of Natural Convection Induced by Variation in Radius of Inner Circular Cylinder Inside Cubic Enclosure
,”
Int. J. Heat Mass Transfer
,
95
, pp.
566
578
.
16.
Fu
,
W.-S.
,
Cheng
,
C.-S.
, and
Shieh
,
W.-J.
,
1994
, “
Enhancement of Natural Convection Heat Transfer of an Enclosure by a Rotating Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
31
(
13
), pp.
1885
1897
.
17.
Roslan
,
R.
,
Saleh
,
H.
, and
Hashim
,
I.
,
2012
, “
Effect of Rotating Cylinder on Heat Transfer in a Square Enclosure Filled With Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7247
7256
.
18.
Chamkha
,
A. J.
,
Selimefendigil
,
F.
, and
Ismael
,
M. A.
,
2016
, “
Mixed Convection in a Partially Layered Porous Cavity With an Inner Rotating Cylinder
,”
Numer. Heat Transfer, Part A
,
69
(
6
), pp.
659
675
.
19.
Aly
,
A. M.
,
Asai
,
M.
, and
Chamkha
,
A. J.
,
2015
, “
Analysis of Unsteady Mixed Convection in Lid-Driven Cavity Included Circular Cylinders Motion Using an Incompressible Smoothed Particle Hydrodynamics Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
25
(
8
), pp.
2000
2021
.
20.
Gibanov
,
N. S.
,
Sheremet
,
M. A.
,
Ismael
,
M. A.
, and
Chamkha
,
A. J.
,
2017
, “
Mixed Convection in a Ventilated Cavity Filled With a Triangular Porous Layer
,”
Transp. Porous Med.
,
120
(
1
), pp.
1
21
.
21.
Khozeymehnezhad
,
H.
, and
Mirbozorgi
,
S. A.
,
2012
, “
Comparison of Natural Convection Around a Circular Cylinder With a Square Cylinder Inside a Square Enclosure
,”
J. Mech. Eng. Autom.
,
2
(
6
), pp.
176
183
.
22.
Parmananda
,
M.
,
Khan
,
S.
,
Dalal
,
A.
, and
Natarajan
,
G.
,
2017
, “
Critical Assessment of Numerical Algorithms for Convective-Radiative Heat Transfer in Enclosures With Different Geometries
,”
Int. J. Heat Mass Transfer
,
108
(Pt. A), pp.
627
644
.
23.
Bararnia
,
H.
,
Soleimani
,
S.
, and
Ganji
,
D. D.
,
2011
, “
Lattice Boltzmann Simulation of Natural Convection Around a Horizontal Elliptic Cylinder Inside a Square Enclosure
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1436
1442
.
24.
Kalyana Raman
,
S.
,
Arul Prakash
,
K.
, and
Vengadesan
,
S.
,
2012
, “
Natural Convection From a Heated Elliptic Cylinder With a Different Axis Ratio in a Square Enclosure
,”
Numer. Heat Transfer, Part A
,
62
(
8
), pp.
639
658
.
25.
Zhang
,
P.
,
Zhang
,
X.
,
Deng
,
J.
, and
Song
,
L.
,
2016
, “
A Numerical Study of Natural Convection in an Inclined Square Enclosure With an Elliptic Cylinder Using Variational Multiscale Element Free Galerkin Method
,”
Int. J. Heat Mass Transfer
,
99
, pp.
721
737
.
26.
Roslan
,
R.
,
Saleh
,
H.
, and
Hashim
,
I.
,
2014
, “
Natural Convection in a Differentially Heated Square Enclosure With a Solid Polygon
,”
Sci. World J.
,
2014
, p.
617492
.
27.
Tayebi
,
T.
,
Chamkha
,
A. J.
,
Djezzar
,
M.
, and
Bouzerzour
,
A.
,
2016
, “
Natural Convective Nanofluid Flow in an Annular Space Between Confocal Elliptic Cylinders
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011010
.
28.
Said
,
B. O.
,
Retiel
,
N.
, and
Bouguerra
,
H.
,
2014
, “
Numerical Simulation of Natural Convection in a Vertical Conical Cylinder Partially Annular Space
,”
Am. J. Energy Res.
,
2
(
2
), pp.
24
29
.
29.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2013
, “
Conjugate Heat Transfer in a Porous Cavity Heated by a Triangular Thick Wall
,”
Numer. Heat Transfer, Part A
,
63
(
2
), pp.
144
158
.
30.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2013
, “
Conjugate Heat Transfer in a Porous Cavity Filled With Nanofluids and Heated by a Triangular Thick Wall
,”
Int. J. Therm. Sci.
,
67
, pp.
135
151
.
31.
Sheremet
,
M. A.
, and
Trifonova
,
T. A.
,
2013
, “
Unsteady Conjugate Natural Convection in a Vertical Cylinder Partially Filled With a Porous Medium
,”
Numer. Heat Transfer, Part A
,
64
(
12
), pp.
994
1015
.
32.
Sheremet
,
M. A.
, and
Trifonova
,
T. A.
,
2014
, “
Unsteady Conjugate Natural Convection in a Vertical Cylinder Containing a Horizontal Porous Layer: Darcy Model and Brinkman-Extended Darcy Model
,”
Transp. Porous Medium
,
101
(
3
), pp.
437
463
.
33.
Basak
,
T.
,
Roy
,
S.
,
Paul
,
T.
, and
Pop
,
I.
,
2006
, “
Natural Convection in a Square Cavity Filled With a Porous Medium Effects of Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
49
(
7–8
), pp.
1430
1441
.
34.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2014
, “
Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled With Nanofluid
,”
Numer. Heat Transfer, Part A
,
65
(
11
), pp.
1089
1113
.
You do not currently have access to this content.