We study hydrodynamics, heat transfer, and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which, in turn, shifts the location of the velocity's maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow.

References

References
1.
Lauga
,
E.
,
Brenner
,
M. P.
, and
Stone
,
H. A.
,
2007
, “
Microfluidics: The No-Slip Boundary Condition
,”
Springer Handbook of Experimental Fluid Mechanics
, C. Tropea, A. L. Yarin, and J. F. Foss, eds., Springer, Berlin, Chap. 19.
2.
Denn
,
M. M.
,
1990
, “
Issues in Viscoelastic Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
13
32
.
3.
Gad-el Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
121
, pp.
5
33
.
4.
Nguyen
,
N.-T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
(Integrated Microsystems Series),
2nd ed.
,
Artech House
,
Norwood, MA
.
5.
Shu
,
J.-J.
,
Teo
,
J. B. M.
, and
Chan
,
W. K.
,
2017
, “
Fluid Velocity Slip and Temperature Jump at a Solid Surface
,”
ASME Appl. Mech. Rev.
,
69
(
2
), p.
020801
.
6.
Denn
,
M. M.
,
2001
, “
Extrusion Instabilities and Wall Slip
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
265
287
.
7.
Kalyon
,
D. M.
,
2005
, “
Apparent Slip and Viscoplasticity of Concentrated Suspensions
,”
J. Rheol.
,
49
(
3
), pp.
621
640
.
8.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
(
6649
), pp.
360
362
.
9.
Navier
,
C. L. M. H.
,
1823
, “
Mémoire sur les lois du Mouvement des Fluides
,”
Mémoire de l'Académie Royale des Sci. de l'Institut de France
,
6
, pp.
389
440
.
10.
Cloitre
,
M.
, and
Bonnecaze
,
R. T.
,
2017
, “
A Review on Wall Slip in High Solid Dispersions
,”
Rheol. Acta
,
56
(
3
), pp.
283
305
.
11.
Matthews
,
M. T.
, and
Hill
,
J. M.
,
2007
, “
Newtonian Flow With Nonlinear Navier Boundary Condition
,”
Acta Mech.
,
191
(
3–4
), pp.
195
217
.
12.
Bird
,
R. B.
,
1959
, “
Unsteady Pseudoplastic Flow Near a Moving Wall
,”
AIChE J.
,
5
(
4
), pp.
565
566
.
13.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
,
1960
, “
Momentum and Heat Transfer in Laminar Boundary-Layer Flows of Non-Newtonian Fluids Past External Surfaces
,”
AIChE J.
,
6
(
2
), pp.
312
317
.
14.
Yan
,
Y.
, and
Koplik
,
J.
,
2008
, “
Flow of Power-Law Fluids in Self-Affine Fracture Channels
,”
Phys. Rev. E
,
77
(
3
), p.
036315
.
15.
Bird
,
R. B.
,
1976
, “
Useful Non-Newtonian Models
,”
Annu. Rev. Fluid Mech.
,
8
(
1
), pp.
13
34
.
16.
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
,
2012
, “
Analytical Solutions for Newtonian and Inelastic Non-Newtonian Flows With Wall Slip
,”
J. Non-Newtonian Fluid Mech.
,
175–176
, pp.
76
88
.
17.
Pritchard
,
D.
,
McArdle
,
C. R.
, and
Wilson
,
S. K.
,
2011
, “
The Stokes Boundary Layer for a Power-Law Fluid
,”
J. Non-Newtonian Fluid Mech.
,
166
(
12–13
), pp.
745
753
.
18.
Wei
,
D.
, and
Jordan
,
P. M.
,
2013
, “
A Note on Acoustic Propagation in Power-Law Fluids: Compact Kinks, mild Discontinuities, and a Connection to Finite-Scale Theory
,”
Int. J. Non-Linear Mech.
,
48
, pp.
72
77
.
19.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
(
13
), pp.
1
50
.
20.
Yovanovich
,
M. M.
, and
Khan
,
W. A.
,
2015
, “
Friction and Heat Transfer in Liquid and Gas Flows in Micro- and Nanochannels
,”
Advances in Heat Transfer
, Vol.
47
,
E. M.
Sparrow
,
J. P.
Abraham
, and
J. M.
Gorman
, eds.,
Elsevier
,
Waltham, MA
, pp.
203
307
.
21.
Barbati
,
A. C.
,
Desroches
,
J.
,
Robisson
,
A.
, and
McKinley
,
G. H.
,
2016
, “
Complex Fluids and Hydraulic Fracturing
,”
Annu. Rev. Chem. Biomol. Eng.
,
7
, pp.
415
453
.
22.
Barletta
,
A.
,
1996
, “
Fully Developed Laminar Forced Convection in Circular Ducts for Power Law Fluids With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
40
(
1
), pp.
15
26
.
23.
Cruz
,
D. A.
,
Coelho
,
P. M.
, and
Alves
,
M. A.
,
2012
, “
A Simplified Method for Calculating Heat Transfer Coefficients and Friction Factors in Laminar Pipe Flow of Non-Newtonian Fluids
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091703
.
24.
Jambal
,
O.
,
Shigechi
,
T.
,
Davaa
,
G.
, and
Momoki
,
S.
,
2005
, “
Effects of Viscous Dissipation and Fluid Axial Heat Conduction on Heat Transfer for Non-Newtonian Fluids in Ducts With Uniform Wall Temperature—Part II: Annular Ducts
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1174
1183
.
25.
Tso
,
C. P.
,
Sheela-Francisca
,
J.
, and
Hung
,
Y.-M.
,
2010
, “
Viscous Dissipation Effects of Power-Law Fluid Flow Within Parallel Plates With Constant Heat Fluxes
,”
J. Non-Newtonian Fluid Mech.
,
165
(
11–12
), pp.
625
630
.
26.
Sheela-Francisca
,
J.
,
Tso
,
C. P.
,
Hung
,
Y. M.
, and
Rilling
,
D.
,
2012
, “
Heat Transfer on Asymmetric Thermal Viscous Dissipative Couette–Poiseuille Flow of Pseudo-Plastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
169–170
(
2
), pp.
42
53
.
27.
Straughan
,
B.
,
2015
,
Convection With Local Thermal Non-Equilibrium and Microfluidic Effects
(Advances in Mechanics and Mathematics), Vol.
32
,
Springer International Publishing
,
Cham, Switzerland
.
28.
Kaushik
,
P.
,
Mondal
,
P. K.
,
Pati
,
S.
, and
Chakraborty
,
S.
,
2017
, “
Heat Transfer and Entropy Generation Characteristics of a Non-Newtonian Fluid Squeezed and Extruded Between Two Parallel Plates
,”
ASME J. Heat Transfer
,
139
(
2
), p.
022004
.
29.
Sefid
,
M.
, and
Izadpanah
,
E.
,
2013
, “
Developing and Fully Developed Non-Newtonian Fluid Flow and Heat Transfer Through Concentric Annuli
,”
ASME J. Heat Transfer
,
135
(
7
), p.
071702
.
30.
Bejan
,
A.
,
1999
, “
The Method of Entropy Generation Minimization
,”
Energy and the Environment
(Environmental Science and Technology Library), Vol.
15
,
A.
Bejan
,
P.
Vadász
, and
D. G.
Kröger
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
11
22
.
31.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2002
, “
Thermodynamic Analysis of Flow and Heat Transfer Inside Channel With Two Parallel Plates
,”
Exergy
,
2
(
3
), pp.
140
146
.
32.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2006
, “
Second Law Analysis of Forced Convection in a Circular Duct for Non-Newtonian Fluids
,”
Energy
,
31
(12), pp.
2226
2244
.
33.
Hung
,
Y. M.
,
2008
, “
Viscous Dissipation Effect on Entropy Generation for Non-Newtonian Fluids in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
35
(
9
), pp.
1125
1129
.
34.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2014
, “
Convective Heat Transfer and Entropy Generation Analysis on Newtonian and Non-Newtonian Fluid Flows Between Parallel-Plates Under Slip Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
70
(
3
), pp.
664
673
.
35.
Anand
,
V.
,
2014
, “
Slip Law Effects on Heat Transfer and Entropy Generation of Pressure Driven Flow of a Power Law Fluid in a Microchannel Under Uniform Heat Flux Boundary Condition
,”
Energy
,
76
, pp.
716
732
.
36.
Goswami
,
P.
,
Mondal
,
P.
,
Datta
,
A.
, and
Chakraborty
,
S.
,
2016
, “
Entropy Generation Minimization in an Electroosmotic Flow of Non-Newtonian Fluid: Effect of Conjugate Heat Transfer
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051704
.
37.
Mondal, P. K.
, 2014, “
Entropy Analysis for the Couette Flow of Non-Newtonian Fluids Between Asymmetrically Heated Parallel Plates: Effect of Applied Pressure Gradient
,”
Phys. Scr.
,
89
(12), p. 125003.
38.
Vayssade
,
A.-L.
,
Lee
,
C.
,
Terriac
,
E.
,
Monti
,
F.
,
Cloitre
,
M.
, and
Tabeling
,
P.
,
2014
, “
Dynamical Role of Slip Heterogeneities in Confined Flows
,”
Phys. Rev. E
,
89
(
5
), p.
052309
.
39.
Panaseti
,
P.
,
Vayssade
,
A.-L.
,
Georgiou
,
G. C.
, and
Cloitre
,
M.
,
2017
, “
Confined Viscoplastic Flows With Heterogeneous Wall Slip
,”
Rheol. Acta
,
56
(
6
), pp.
539
553
.
40.
Stone
,
H. A.
,
2017
, “
Fundamentals of Fluid Dynamics With an Introduction to the Importance of Interfaces
,”
Soft Interfaces
(Lecture Notes of the Les Houches Summer School), Vol.
98
,
L.
Bocquet
,
D.
Quéré
,
T. A.
Witten
, and
L. F.
Cugliandolo
, eds.,
Oxford University Press
, New York, pp.
3
76
.
41.
Leal
,
L. G.
,
2007
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
,
Cambridge, UK
.
42.
Chhabra
,
R. P.
,
2010
, “
Non-Newtonian Fluids: An Introduction
,”
Rheology of Complex Fluids
,
J.
Murali Krishnan
,
A. P.
Deshpande
, and
P. B.
Sunil Kumar
, eds.,
Springer Science+Business Media
,
New York
, pp.
3
34
.
43.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
,
2nd ed.
, Vol.
1
,
Wiley
,
New York
.
44.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
Viscous Dissipation Effects in Microtubes and Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3159
3169
.
45.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
7th ed.
,
Wiley
, New York.
46.
Paoletti
,
S.
,
Rispoli
,
F.
, and
Sciubba
,
E.
,
1989
, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages
,”
Analysis and Design of Energy Systems: Fundamentals and Mathematical Techniques
,
R. A.
Bajura
,
H. N.
Shapiro
, and
J. R.
Zaworksi
, eds.,
American Society of Mechanical Engineers
, New York, pp.
21
29
.
47.
Petrescu
,
S.
,
1994
, “
Comments on ‘The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,’”
Int. J. Heat Mass Transfer
,
37
(
8
), p.
1283
.
48.
Jones
,
E.
,
Oliphant
,
T.
, and
Peterson
,
P.
,
2001
, “
SciPy: Open Source Scientific Tools for Python
,” SciPY, accessed Dec. 12, 2018, http://www.scipy.org
49.
Panton
,
R. L.
,
2013
,
Incompressible Flow
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
50.
Blasius
,
H.
,
1908
, “
Grenzschichten in Flüssigkeiten mit kleiner Reibung
,”
Z. Math. Phys.
,
56
, pp.
1
37
.
51.
Pohlhausen
,
E.
,
1921
, “
Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung
,”
Z. Angew. Math. Mech.
,
1
(
2
), pp.
115
121
.
52.
Jessee
,
R.
,
2015
, “
An Analytic Solution of the Thermal Boundary Layer at the Leading Edge of a Heated Semi-Infinite Flat Plate Under Forced Uniform Flow
,”
M.S. thesis
, Louisiana State University, Baton Rouge, LA.https://digitalcommons.lsu.edu/gradschool_theses/2013/
53.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
54.
Illingworth
,
J. B.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2005
, “
3D Fluid–Solid Heat Transfer Coupling of an Aero Engine Pre-Swirl System
,”
ASME
Paper No. GT2005-68939.
55.
Asako
,
Y.
, and
Hong
,
C.
,
2017
, “
On Temperature Jump Condition for Slip Flow in a Microchannel With Constant Wall Temperature
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072402
.
56.
Hong
,
C.
, and
Asako
,
Y.
,
2010
, “
Some Considerations on Thermal Boundary Condition of Slip Flow
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3075
3079
.
57.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
ASME J. Heat Transfer
,
84
(
4
), pp.
363
369
.
58.
Smoluchowski von Smolan
,
M.
,
1898
, “
Ueber Wärmeleitung in verdünnten Gasen
,”
Ann. Phys.
,
300
(
1
), pp.
101
130
.
You do not currently have access to this content.