Combination of electric and magnetic forces on charged molecules of flowing fluid in the presence of a significant electromagnetic fields on surfaces with a nonuniform thickness (as in the case of upper pointed surface of an aircraft and bonnet of a car which are examples of upper horizontal surfaces of a paraboloid of revolution—uhspr) is inevitable. In this study, the influence of imposed magnetic field and Hall effects on the flow of 29 nm CuO–water nanofluid over such object is presented. Suitable similarity variables were employed to nondimensionalize and parameterize the dimensional governing equation. The numerical solutions of the corresponding boundary value problem were obtained using Runge–Kutta fourth-order integration scheme along with shooting technique. The domain of cross-flow velocity can be highly suppressed when the magnitude of imposed magnetic strength and that of Hall parameter are large. A significant increase in the cross-flow velocity gradient near an upper horizontal surface of the paraboloid of revolution is guaranteed with an increase in the Hall parameter. Enhancement of temperature distribution across the flow is apparent due to an increase in the volume fraction.

References

References
1.
Nahin
,
P. J.
,
2002
,
Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age
,
Johns Hopkins University Press
, Baltimore, MD.
2.
Wilson
,
E.
,
1901
, “
The Growth of Magnetism in Iron Under Alternating Magnetic Force
,”
Proc. R. Soc. London
,
68
(
442–450
), pp.
218
227
.
3.
Hall
,
E.
,
1879
, “
On a New Action of the Magnet on Electric Currents
,”
Am. J. Math.
,
2
(
3
), pp.
287
292
.
4.
Movaghar
,
B.
, and
Cochrane
,
R. W.
,
1991
, “
The Connection Between Hall Effect and Magnetism
,”
Z. Für Phys. B Condens. Matter
,
85
(
2
), pp.
217
225
.
5.
Attia
,
H. A.
, and
Aboul-Hassan
,
A. L.
,
2001
, “
Effect of Hall Current on the Unsteady MHD Flow Due to a Rotating Disk With Uniform Suction or Injection
,”
Appl. Math. Modell.
,
25
, pp.
1089
1098
.
6.
Nowar
,
K.
,
2014
, “
Peristaltic Flow of a Nanofluid Under the Effect of Hall Current and Porous Medium
,”
Math. Probl. Eng.
,
2014
, p. 389581.
7.
Gireesha
,
B. J.
,
Mahanthesh
,
B.
, and
Krupalakshmi
,
K. L.
,
2017
, “
Hall Effect on Two-Phase Radiated Flow of Magneto-Dusty-Nanoliquid With Irregular Heat Generation/Consumption
,”
Results Phys.
,
7
, pp.
4340
4348
.
8.
Gireesha
,
B. J.
,
Mahanthesh
,
B.
,
Thammanna
,
G. T.
, and
Sampathkumar
,
P. B.
,
2018
, “
Hall Effects on Dusty Nanofluid Two-Phase Transient Flow Past a Stretching Sheet Using KVL Model
,”
J. Mol. Liq.
,
256
, pp.
139
147
.
9.
Mahanthesh
,
B.
,
2017
, “
Hall Effect on Two-Phase Laminar Boundary Layer Flow of Dusty Liquid Due to Stretching of an Elastic Flat Sheet
,”
Mapana J. Sci.
,
16
(
3
), pp.
13
26
.
10.
Sugunamma
,
V.
,
Ramadevi
,
B.
,
Ramana
,
J. V.
, and
Sandeep
,
N.
,
2016
, “
Hall Current Effects on Free Convection Casson Fluid Flow in a Rotating System With Convective Boundary Conditions and Constant Heat Source
,”
Chem. Process Eng. Res.
,
41
, pp. 1–14.
11.
Blasius
,
H.
,
1908
, “
Grenzschichten in Flussigkeiten Mit Kleiner Reibung
,”
Z. Math. Phys.
,
56
, pp.
1
37
.
12.
Martin
,
M. J.
, and
Boyd
,
I. D.
,
2001
, “
Blasius Boundary Layer Solution With Slip Flow Conditions
,”
AIP Conf. Proc.
,
585
(
1
), pp.
518
523
.
13.
Bertolotti
,
F. P.
,
Herbert
,
T.
, and
Spalart
,
P. R.
,
1992
, “
Linear and Nonlinear Stability of the Blasius Boundary Layer
,”
J. Fluid Mech.
,
242
(
1
), pp.
441
474
.
14.
Rees
,
D. A. S.
, and
Basson
,
A. P.
,
1996
, “
The Blasius Boundary-Layer Flow of a Micropolar Fluid
,”
Int. J. Eng. Sci.
,
34
(
1
), pp.
113
124
.
15.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surfaces: The Boundary Layer on a Continuous Flat Surface
,”
Am. Inst. Chem. Eng.
,
7
(
2
), pp.
221
225
.
16.
Bilal
,
S.
,
Malik
,
M. Y.
,
Awais
,
M.
,
Khalil-ur-Rehman
,
Hussain
,
A.
, and
Khan
,
I.
,
2016
, “
Numerical Investigation on 2D Viscoelastic Fluid Due to Exponentially Stretching Surface With Magnetic Effects: An Application of Non-Fourier Flux Theory
,”
Neural Comput. Appl.
,
30
(
9
), pp.
2749
2758
.
17.
Alao
,
F. I.
,
Omowaye
,
A. J.
,
Fagbade
,
A. I.
, and
Ajayi
,
B. O.
,
2016
, “
Optimal Homotopy Analysis of Blasius and Sakiadis Newtonian Flows Over a Vertical Convective Porous Surface
,”
Int. J. Eng. Res. Afr.
,
28
, pp.
102
117
.
18.
Sandeep
,
N.
,
Animasaun
,
I. L.
, and
Ali
,
M. E.
,
2017
, “
Unsteady Liquid Film Flow of Electrically Conducting Magnetic-Nanofluids in the Vicinity of a Thin Elastic Sheet
,”
J. Comput. Theor. Nanosci.
,
14
(
2
), pp.
1140
1147
.
19.
Animasaun
,
I. L.
,
2015
, “
Casson Fluid Flow With Variable Viscosity and Thermal Conductivity Along Exponentially Stretching Sheet Embedded in a Thermally Stratified Medium With Exponentially Heat Generation
,”
J. Heat Mass Transfer Res.
,
2
(
2
), pp.
63
78
.
20.
Lee
,
L. L.
,
1967
, “
Boundary Layer Over a Thin Needle
,”
Phys. Fluids
,
10
(
4
), pp.
820
822
.
21.
Soid
,
S. K.
,
Ishak
,
A.
, and
Pop
,
I.
,
2017
, “
Boundary Layer Flow Past a Continuously Moving Thin Needle in a Nanofluid
,”
Appl. Thermal Eng.
,
114
, pp.
58
64
.
22.
Agarwal
,
M.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2002
, “
Laminar Momentum and Thermal Boundary Layers of Power-Law Fluids Over a Slender Cylinder
,”
Chem. Eng. Sci.
,
57
(
8
), pp.
1331
1341
.
23.
Koriko
,
O. K.
, and
Animasaun
,
I. L.
,
2017
, “
New Similarity Solution of Micropolar Fluid Flow Problem Over an uhspr in the Presence of Quartic Kind of Autocatalytic Chemical Reaction
,”
Front. Heat Mass Transfer
,
8
, p.
26
.
24.
Ajayi
,
T. M.
,
Omowaye
,
A. J.
, and
Animasaun
,
I. L.
,
2017
, “
Viscous Dissipation Effects on the Motion of Casson Fluid Over an Upper Horizontal Thermally Stratified Melting Surface of a Paraboloid of Revolution: Boundary Layer Analysis
,”
J. Appl. Math.
,
2017
, p.
1697135
.
25.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
,
2016
, “
Bioconvection in MHD Nanofluid Flow With Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction Past an Upper Surface of a Paraboloid of Revolution
,”
Int. J. Therm. Sci.
,
109
, pp.
159
171
.
26.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
,
2016
, “
Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid With Nonlinear Thermal Radiation and Quartic Chemical Reaction Past an Upper Horizontal Surface of a Paraboloid of Revolution
,”
J. Mol. Liq.
,
221
, pp.
733
743
.
27.
Davis
,
R. T.
, and
Werle
,
M. J.
,
1972
, “
Numerical Solutions for Laminar Incompressible Flow Past a Paraboloid of Revolution
,”
Am. Inst. Aeronaut. Astronaut. J.
,
10
(
9
), pp.
1224
1230
.
28.
Sowerby
,
L.
, and
Cooke
,
J.
,
1953
, “
The Flow of Fluid Along Corners and Edges
,”
Q. J. Mech. Appl. Math.
,
6
(
1
), pp.
50
70
.
29.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
(
6
), pp.
744
746
.
30.
Yacob
,
N. A.
,
Ishak
,
A.
,
Pop
,
I.
, and
Vajravelu
,
K.
,
2011
, “
Boundary Layer Flow Past a Stretching/Shrinking Surface Beneath an External Uniform Shear Flow With a Convective Surface Boundary Condition in a Nanofluid
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
314
.
31.
Gireesha
,
B. J.
,
Mahanthesh
,
B.
,
Gorla
,
R. S. R.
, and
Manjunatha
,
P. T.
,
2016
, “
Thermal Radiation and Hall Effects on Boundary Layer Flow Past a Non-Isothermal Stretching Surface Embedded in Porous Medium With Non-Uniform Heat Source/Sink and Fluid-Particle Suspension
,”
Heat Mass Transfer
,
52
(
4
), pp.
897
911
.
32.
Srinivasacharya
,
D.
,
Mallikarjuna
,
B.
, and
Bhuvanavijaya
,
R.
,
2016
, “
Effects of Thermophoresis and Variable Properties on Mixed Convection Along a Vertical Wavy Surface in a Fluid Saturated Porous Medium
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1243
1253
.
33.
Yao
,
L. S.
,
1983
, “
Natural Convection Along a Vertical Wavy Surface
,”
ASME J. Heat Transfer
,
105
(
3
), pp.
465
468
.
34.
Rees
,
D. A. S.
, and
Pop
,
I.
,
1994
, “
Note on Free Convection Along a Vertical Wavy Surface in a Porous Medium
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
505
508
.
35.
Cheng
,
C. Y.
,
2000
, “
Natural Convection Heat and Mass Transfer Near a Vertical Wavy Surface With Constant Wall Temperature and Concentration in a Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
27
(
8
), pp.
1143
1154
.
36.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
, pp.
313
341
.
37.
Bai
,
W.
, and
Taylor
,
R. E.
,
2006
, “
Higher-Order Boundary Element Simulation of Fully Nonlinear Wave Radiation by Oscillating Vertical Cylinders
,”
Appl. Ocean Res.
,
28
(
4
), pp.
247
265
.
38.
Kishore
,
P. M.
,
Rajesh
,
V.
, and
Verma
,
V. S.
,
2012
, “
The Effects of Thermal Radiation and Viscous Dissipation on MHD Heat and Mass Diffusion Flow Past an Oscillating Vertical Plate Embedded in a Porous Medium With Variable Surface Conditions
,”
Theor. Appl. Mech.
,
39
(
2
), pp.
99
125
.
39.
Kataria
,
H. R.
, and
Patel
,
H. R.
,
2016
, “
Radiation and Chemical Reaction Effects on MHD Casson Fluid Flow Past an Oscillating Vertical Plate Embedded in Porous Medium
,”
Alexandria Eng. J.
,
55
(
1
), pp.
583
595
.
40.
Soundalgekar
,
V. M.
,
1979
, “
Free Convection Effects on the Flow Past an Infinite Vertical Oscillating Plate
,”
Astrophys. Space Sci.
,
64
(
1
), pp.
165
171
.
41.
Chen
,
F. J.
,
Malik
,
M. R.
, and
Beckwith
,
I. E.
,
1989
, “
Boundary-Layer Transition on a Cone and Flat Plate at Mach 3.5
,”
Am. Inst. Aeronaut. Astronaut. J.
,
27
(
6
), pp.
687
693
.
42.
Rashad
,
A. M.
,
El-Hakiem
,
M. A.
, and
Abdou
,
M. M. M.
,
2011
, “
Natural Convection Boundary Layer of a Non-Newtonian Fluid About a Permeable Vertical Cone Embedded in a Porous Medium Saturated With a Nanofluid
,”
Comput. Math. Appl.
,
62
(
8
), pp.
3140
3151
.
43.
Garrett
,
S. J.
,
Hussain
,
Z.
, and
Stephen
,
S. O.
,
2009
, “
The Cross-Flow Instability of the Boundary Layer on a Rotating Cone
,”
J. Fluid Mech.
,
622
, pp.
209
232
.
44.
Benazir
,
A. J.
,
Sivaraj
,
R.
, and
Makinde
,
O. D.
,
2015
, “
Unsteady Magnetohydrodynamic Casson Fluid Flow Over a Vertical Cone and Flat Plate With Non-Uniform Heat Source/Sink
,”
Int. J. Eng. Res. Afr.
,
21
, pp.
69
83
.
45.
Parmar
,
A.
,
2017
, “
MHD Falkner-Skan Flow of Casson Fluid Flow and Heat Transfer With Variable Property Past a Moving Wedge
,”
Int. J. Appl. Comput. Math.
,
3
(
S1
), pp.
611
629
.
46.
Benazir
,
A. J.
,
Sivaraj
,
R.
, and
Rashidi
,
M. M.
,
2016
, “
Comparison Between Casson Fluid Flow in the Presence of Heat and Mass Transfer From a Vertical Cone and Flat Plate
,”
ASME J. Heat Transfer
,
138
(
11
), p.
112005
.
47.
Basha
,
H. T.
,
Sivaraj
,
R.
,
Animasaun
,
I. L.
, and
Makinde
,
O. D.
,
2018
, “
Influence of Non-Uniform Heat Source/Sink on Unsteady Chemically Reacting Nanofluid Flow Over a Cone and Plate
,”
Defect Diffus. Forum
,
389
, pp.
50
59
.
48.
Nadeem
,
S.
, and
Saleem
,
S.
,
2013
, “
Analytical Treatment of Unsteady Mixed Convection MHD Flow on a Rotating Cone in a Rotating Frame
,”
J. Taiwan Inst. Chem. Eng.
,
44
(
4
), pp.
596
604
.
49.
Nadeem
,
S.
, and
Saleem
,
S.
,
2014
, “
Theoretical Investigation of MHD Nanofluid Flow Over a Rotating Cone: An Optimal Solutions
,”
Inf. Sci. Lett.
,
3
(
2
), pp.
55
62
.
50.
Nadeem
,
S.
, and
Saleem
,
S.
,
2015
, “
Analytical Study of Third Grade Fluid Over a Rotating Vertical Cone in the Presence of Nanoparticles
,”
Int. J. Heat Mass Transfer
,
85
, pp.
1041
1048
.
51.
Tamoor
,
M.
,
Waqas
,
M.
,
Khan
,
M. I.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2017
, “
Magnetohydrodynamic Flow of Casson Fluid Over a Stretching Cylinder
,”
Results Phys.
,
7
, pp.
498
502
.
52.
Animasaun
,
I. L.
,
2016
, “
47 nm Alumina Water Nanofluid Flow Within Boundary Layer Formed on Upper Horizontal Surface of Paraboloid of Revolution in the Presence of Quartic Autocatalysis Chemical Reaction
,”
Alexandria Eng. J.
,
55
(
3
), pp.
2375
2389
.
53.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
54.
Koriko
,
O. K.
,
Omowaye
,
A. J.
,
Sandeep
,
N.
, and
Animasaun
,
I. L.
,
2017
, “
Analysis of Boundary Layer Formed on an Upper Horizontal Surface of the Paraboloid of Revolution Within Nanofluid Flow in the Presence of Thermophoresis and Brownian Motion of 29 nm CuO
,”
Int. J. Mech. Sci.
,
124–125
, pp.
22
36
.
55.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
.
56.
Oztop
,
H.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
57.
Shah
,
N. A.
,
Animasaun
,
I. L.
,
Ibraheem
,
R. O.
,
Babatunde
,
H. A.
,
Sandeep
,
N.
, and
Pop
,
I.
,
2018
, “
Scrutinization of the Effects of Grashof Number on the Flow of Different Fluids Driven by Convection Over Various Surfaces
,”
J. Mol. Liq.
,
249
, pp.
980
990
.
58.
Sivaraj
,
R.
,
Animasaun
,
I. L.
,
Olabiyi
,
A. S.
,
Saleem
,
S.
, and
Sandeep
,
N.
,
2018
, “
Gyrotactic Microorganisms and Thermoelectric Effects on the Dynamics of 29 nm CuO-Water Nanofluid Over an Upper Horizontal Surface of Paraboloid of Revolution
,”
Multidiscip. Model. Mater. Struct.
,
14
(
4
), pp.
695
721
.
59.
Nagaosa
,
N.
,
Sinova
,
J.
,
Onoda
,
S.
,
MacDonald
,
A. H.
, and
Ong
,
N. P.
,
2010
, “
Anomalous Hall Effect
,”
Rev. Modern Phys.
,
82
(
2
), p.
1539
.
60.
Babu
,
M. J.
, and
Sandeep
,
N.
,
2016
, “
3D MHD Slipflow of a Nanofluid Over a Slendering Stretching Sheet With Thermophoresis and Brownian Motion Effects
,”
J. Mol. Liq.
,
222
, pp.
1003
1009
.
61.
Sandeep
,
N.
, and
Malvandi
,
A.
,
2016
, “
Enhanced Heat Transfer in Liquid Thin Film Flow of Non-Newtonian Nanofluids Embedded With Graphene Nanoparticles
,”
Adv. Powder Technol.
,
27
(
6
), pp.
2448
2456
.
62.
Motsa
,
S. S.
, and
Animasaun
,
I. L.
,
2016
, “
Paired Quasi-Linearization Analysis of Heat Transfer in Unsteady Mixed Convection Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms Due to Impulsive Motion
,”
ASME J. Heat Transfer
,
138
(
11
), p.
114503
.
63.
Animasaun
,
I. L.
,
Koriko
,
O. K.
,
Adegbie
,
K. S.
,
Babatunde
,
H. A.
,
Ibraheem
,
R. O.
,
Sandeep
,
N.
, and
Mahanthesh
,
B.
,
2018
, “
Comparative Analysis Between 36 nm and 47 nm Alumina–Water Nanofluid Flows in the Presence of Hall Effect
,”
J. Therm. Anal. Calorim.
(in press).
You do not currently have access to this content.