The present research aims to examine the micropolar nanofluid flow of Casson fluid between two parallel plates in a rotating system with effects of thermal radiation. The influence of Hall current on the micropolar nanofluids have been taken into account. The fundamental leading equations are transformed to a system of nonlinear differential equations using appropriate similarity variables. An optimal and numerical tactic is used to get the solution of the problem. The convergence and comparison have been shown numerically. The impact of the Hall current, Brownian movement, and thermophoresis phenomena of Casson nanofluid have been mostly concentrated in this investigation. It is found that amassed Hall impact decreases the operative conductivity which intends to increase the velocity field. The temperature field enhances with larger values of Brownian motion thermophoresis effect. The impacts of the Skin friction coefficient, heat flux, and mass flux have been deliberate. The skin friction coefficient is observed to be larger for k=0, as compared to the case of k=0.5. Furthermore, for conception and visual demonstration, the embedded parameters have been deliberated graphically.

References

References
1.
Eringen
,
A. C.
,
1964
, “
Simple Micropolar Fluids
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
205
217
.
2.
Eringen
,
A. C.
,
1966
, “
Theory of Micropolar Fluid
,”
J. Math. Mech.
,
16
(
1
), pp.
1
18
.
3.
Lukaszewicz
,
G.
,
1999
,
Micropolar Fluids: Theory and Applications
(Modeling and Simulation in Science, Engineering and Technology),
Springer
, New York, p. 253.
4.
Mohammeadein
,
A. A.
, and
Gorla
,
R. S. R.
,
1966
, “
Effects of Transverse Magnetic Field on a Mixed Convection in a Micropolar Fluid on a Horizontal Plate With Vectored Mass Transfer
,”
Acta. Mech.
,
118
(
1–4
), pp.
1
12
.
5.
Kasivishwanathan
,
S. R.
, and
Gandhi
,
M. V.
,
1992
, “
A Class of Exact Solutions for the Magnetohydrodynamic Flow of a Micropolar Fluid
,”
Int. J. Eng. Sci.
,
3
(
4
), pp.
409
417
.
6.
Agarwal
,
R. S.
, and
Dhanapal
,
C.
,
1998
, “
Numerical Solution of Free Convection Micropolar Fluid Flow Between Two Parallel Porous Vertical Plates
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1247
1255
.
7.
Bhargava
,
R.
,
Kumar
,
L.
, and
Takhar
,
H. S.
,
2003
, “
Finite Element Solution of Mixed Convection Micropolar Flow Driven by a Porous Stretching Sheet
,”
Int. J. Eng. Sci.
,
41
(
18
), pp.
2161
2178
.
8.
Nazar
,
R.
,
Amin
,
N.
,
Filip
,
D.
, and
Pop
,
I.
,
2004
, “
Stagnation Point Flow of a Micropolar Fluid Towards a Stretching Sheet
,”
Int. J. Nonlinear Mech.
,
3
(
7
), pp.
1227
1235
.
9.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Magneto hydrodynamic (MHD) Flow of a Micropolar Fluid Towards a Stagnation Point on Vertical Surface
,”
Comput. Math. Appl.
,
58
(
12
), pp.
3188
3194
.
10.
Nadeem
,
S.
,
Sadaf
,
M.
,
Rashid
,
M.
, and
Muhammad
,
A. S.
,
2016
, “
Optimal and Numerical Solutions for an MHD Micropolar Nanofluid Between Rotating Horizontal Parallel Plates
,”
Plos One
,
10
(
6
), p.
0124016
.
11.
Alfven
,
H.
,
1942
, “
Existence of Electromagnetic-Hydrodynamic Waves
,”
Nature
,
150
(
3805
), pp.
405
406
.
12.
Hall
,
E.
,
1879
, “
On a New Action of the Magnet on Electric Currents
,”
Am. J. Math.
,
2
(
3
), pp.
287
292
.
13.
Pop
,
I.
, and
Soundalgekar
,
V. M.
,
1974
, “
Effects of Hall Currents on Hydrodynamic Flow Near a Porous Plate
,”
Acta Mech.
,
20
(
3–4
), pp.
315
318
.
14.
Ahmed
,
S.
, and
Zueco
,
J.
,
2011
, “
Modeling of Heat and Mass Transfer in a Rotating Vertical Porous Channel With Hall Current
,”
Chem. Eng. Commun.
,
198
(
10
), pp.
1294
1308
.
15.
Aziz
,
A. M.
,
2013
, “
Effects of Hall Current on the Flow and Heat Transfer of a Nanofluid Over a Stretching Sheet With Partial Slip
,”
Int. J. Mod. Phys.
,
24
(
7
), p.
1350044
.
16.
Hayat
,
T.
,
Nawaz
,
M.
,
Iram
,
S.
, and
Alsaedi
,
A.
,
2013
, “
Mixed Convection Three-Dimensional Flow With Hall and Ion-Slip Effects
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
14
(
3–4
), pp.
167
177
.
17.
Wang
,
X. Q.
, and
Mujumdar
,
S. A.
,
2008
, “
Review on Nanofluids—Part II:Experiments and Applications
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
631
648
.
18.
Goodman
,
S.
,
1957
, “
Radiant-Heat Transfer Between Nongray Parallel Plates
,”
J. Res. Natl. Bur. Stand.
,
58
(
1
), p.
2732
.
19.
Borkakoti
,
A. K.
, and
Bharali
,
A.
,
1983
, “
Hydromagnetic Flow and Heat Transfer Between Two Horizontal Plates, the Lower Plate Being a Stretching Sheet
,”
Q. Appl. Math.
,
40
(
4
), pp.
461
467
https://www.jstor.org/stable/43637170?seq=1#page_scan_tab_contents.
20.
Sheikholeslami
,
M.
,
2017
, “
Influence of Magnetic Field on Nanofluid Free Convection in an Open Porous Cavity by Means of Lattice Boltzmann Method
,”
J. Mol. Liq.
,
234
, p.
364
.
21.
Sheikholeslami
,
M.
,
2017
, “
Magnetic Field Influence on Nanofluid Thermal Radiation in a Cavity With Tilted Elliptic Inner Cylinder
,”
J. Mol. Liq.
,
229
, pp.
137
147
.
22.
Sheikholeslami
,
M.
,
2017
, “
Magnetohydrodynamic Nanofluid Forced Convection in a Porous Lid Driven Cubic Cavity Using Lattice Boltzmann Method
,”
J. Mol. Liq.
,
231
, pp.
555
565
.
23.
Sheikholeslami
,
M.
,
2017
, “
Numerical Simulation of Magnetic Nanofluid Natural Convection in Porous Media
,”
Phys. Lett. A.
,
381
(
5
), pp.
494
503
.
24.
Sheikholeslami
,
M.
,
2014
, “
Numerical Study of Heat Transfer Enhancement in a Pipe Filled With Porous Media by Axisymmetric TLB Model Based on GPU
,”
Int. J. Heat Mass Transfer
,
70
, pp.
1040
1049
.
25.
Sheikholeslami
,
M.
,
2016
, “
CVFEM for Magnetic Nanofluid Convective Heat Transfer in a Porous Curved Enclosure
,”
Eur. Phys. J. Plus.
,
131
(
11
), p.
413
.
26.
Sheikholeslami
,
M.
,
2017
, “
CuO-Water Nanofluid Free Convection in a Porous Cavity Considering Darcy Law
,”
Eur. Phys. J. Plus.
,
132
(
1
), p.
55
.
27.
Sheikholeslami
,
M.
,
2017
, “
Numerical Investigation of MHD Nanofluid Free Convective Heat Transfer in a Porous Tilted Enclosure
,”
Eng. Comput.
,
34
(
6
), pp.
1939
1955
.
28.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Magnetohydrodynamic CuO-Water Nanofluid in a Porous Complex Shaped Enclosure
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041007
.
29.
Sheikholeslami
,
M.
,
2018
, “
CuO-Water Nanofluid Flow Due to Magnetic Field Inside a Porous Media Considering Brownian Motion
,”
J. Mol. Liq.
,
249
, pp.
921
929
.
30.
Sheikholeslami
,
M.
,
2017
, “
Influence of Lorentz Forces on Nanofluid Flow in a Porous Cylinder Considering Darcy Model
,”
J. Mol. Liq.
,
225
, pp.
903
912
.
31.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Simulation of Nanofluid Heat Transfer in Presence of Magnetic Field—A Review
,”
Int. J. Heat Mass Transfer
,
115
(Pt. B), pp.
1203
1233
.
32.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2017
, “
Free Convection of CuO–H2O Nanofluid in a Curved Porous Enclosure Using Mesoscopic Approach
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
14942
14949
.
33.
Sheikholeslami
,
M.
, and
Rokni
,
H. B.
,
2018
, “
Numerical Simulation for Impact of Coulomb Force on Nanofluid Heat Transfer in a Porous Enclosure in Presence of Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
118
, pp.
823
831
.
34.
Mahmoodi
,
M.
, and
Kandelousi
,
S.
,
2015
, “
Application of DTM for Kerosene-Alumina Nanofluid Flow and Heat Transfer Between Two Rotating Plate
,”
Eur. Phys. J. Plus.
,
130
(
7
), p.
142
.
35.
Tauseef
,
M. S.
,
Ali
,
Z.
,
Khan
,
K. Z.
, and
Ahmed
,
N.
,
2015
, “
On Heat and Mass Transfer Analysis for the Flow of a Nanofluid Between Rotating Parallel Plates
,”
Aerosp. Sci. Technol.
,
46
, pp.
514
522
.
36.
Rokni
,
H. B.
,
Alsaad
,
D. M.
, and
Valipour
,
P.
,
2016
, “
Electrohydrodynamic Nanofluid Flow and Heat Transfer Between Two Plates
,”
J. Mol. Liq.
,
216
, pp.
583
589
.
37.
Tawade
,
L.
,
Abel
,
M.
,
Metri
,
G.
, and
Koti
,
A.
,
2016
, “
Thin Film Flow and Heat Transfer Over an Unsteady Stretching Sheet With Thermal Radiation, Internal Heating in Presence of External Magnetic Field
,”
Int. J. Adv. Appl. Math. Mech.
,
3
, pp.
29
40
.
38.
Bakier
,
A. Y.
,
2001
, “
Thermal Radiation Effect on Mixed Convection From Vertical Surface in Saturated Porous Media
,”
Int. Commun. Heat Mass Transfer
,
28
(
1
), pp.
119
126
.
39.
Moradi
,
A.
,
Ahmadikia
,
H.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2013
, “
On Mixed Convection Radiation Interaction About an Inclined Plate Through a Porous Medium
,”
Int. J. Therm. Sci.
,
64
, pp.
129
136
.
40.
Chaudhary
,
S.
,
Singh
,
S.
, and
Chaudhary
,
S.
,
2015
, “
Thermal Radiation Effects on MHD Boundary Layer Flow Over an Exponentially Stretching Surface
,”
Sci. Res. Publ. Appl. Math.
,
6
(
2
), pp.
295
303
.
41.
Eldabe
,
N. T.
,
Elsaka
,
A. G.
,
Radwan
,
A. E.
, and
Eltaweel
,
M. A. M.
,
2010
, “
Effects of Chemical Reaction and Heat Radiation on the MHD Flow of Viscoelastic Fluid Through a Porous Medium Over a Horizontal Stretching Flat Plate
,”
J. Am. Sci.
,
9
pp.
126
136
.
42.
Das
,
K.
,
2012
, “
Effects of Thermophoresis and Thermal Radiation on MHD Mixed Convective Heat and Mass Transfer Flow
,”
Afr. Math.
,
24
(
4
), pp.
511
524
.
43.
TaylorGeoffrey
,
S.
,
1921
, “
Experiments With Rotating Fluids
,”
Proc. R. London A
,
100
(
703
), pp.
114
121
.
44.
Greenspan
,
H. P.
,
1969
, “
The Theory of Rotating Fluids. H. P. Greenspan. Cambridge University Press, New York, 1968. xii + 328 pp., illus. $15. Cambridge Monographs on Mechanics and Applied Mathematics
,”
Science
,
164
(
3882
), p.
938
.
45.
Liao
,
S. J.
,
2004
, “
On the Homotopy Analysis Method for Nonlinear Problems
,”
Appl. Math. Comput.
,
147
(
2
), pp.
499
513
.
46.
Shah
,
Z.
,
Gul
,
T.
,
Khan
,
A. M.
,
Ali
,
I.
, and
Islam
,
S.
,
2017
, “
Effects of Hall Current on Steady Three Dimensional Non-Newtonian Nanofluid in a Rotating Frame With Brownian Motion and Thermophoresis Effects
,”
J. Eng. Technol.
,
6
, pp.
280
296
.
47.
Shah
,
Z.
,
Islam
,
S.
,
Gul
,
T.
,
Bonyah
,
E.
, and
Khan
,
M. A.
,
2018
, “
The Electrical MHD and Hall Current Impact on Micropolar Nanofluid Flow Between Rotating Parallel Plates
,”
Results Phys.
,
9
, pp.
1201
1214
.
48.
Hammed
,
H.
,
Haneef
,
M.
,
Shah
,
Z.
,
Islam
,
S.
,
Khan
,
W.
, and
Muhammad
,
S.
,
2018
, “
The Combined Magneto Hydrodynamic and Electric Field Effect on an Unsteady Maxwell Nanofluid Flow Over a Stretching Surface Under the Influence of Variable Heat and Thermal Radiation
,”
Appl. Sci.
,
8
(
2
), p.
160
.
49.
Muhammad
,
S.
,
Ali
,
G.
,
Shah
,
Z.
,
Islam
,
S.
, and
Hussain
,
A.
,
2018
, “
The Rotating Flow of Magneto Hydrodynamic Carbon Nanotubes Over a Stretching Sheet With the Impact of Non-Linear Thermal Radiation and Heat Generation/Absorption
,”
Appl. Sci.
,
8
(
4
), p.
482
.
50.
Casson
,
N. A.
,
1999
, “
A Flow Equation for Pigment Oil Suspension of Printing Ink Type
,”
Rheology of Dispersed System
,
C. C.
Mill
, ed.,
Pergamon Press
,
Oxford, UK
.
51.
Mehmood
,
Z.
,
Mehmood
,
R.
, and
Iqbal
,
Z.
,
2017
, “
Numerical Investigation of Micropolar Casson Fluid Over a Stretching Sheet With Internal Heating
,”
Commun. Theor. Phys.
,
67
(
4
), pp.
443
448
.
52.
Abolbashari
,
M. H.
,
Freidoonimehr
,
N.
, and
Rashidi
,
M. M.
,
2015
, “
Analytical Modeling of Entropy Generation for Casson Nano-Fluid Flow Induced by a Stretching Surface
,”
Adv. Powder Technol.
,
2
(
2
), pp.
542
552
.
53.
Megahe
,
A. M.
,
2016
, “
Effect of Slip Velocity on Casson Thin Film Flow and Heat Transfer Due to Unsteady Stretching Sheet in Presence of Variable Heat Flux and Viscous Dissipation
,”
Appl. Math. Mech.-Engl. Ed.
,
36
(
10
), p.
1273
.
54.
Qasim
,
M.
, and
Noreen
,
S.
,
2014
, “
Heat Transfer in the Boundary Layer Flow of a Casson Fluid Over a Permeable Shrinking Sheet With Viscous Dissipation
,”
Eur. Phys. J. Plus
,
7
(
1
), pp.
129
137
.
You do not currently have access to this content.