In this study, air jet impingement on flat, triangular-corrugated, and sinusoidal-corrugated surfaces was numerically investigated. Bottom surface was subjected to constant surface temperature. Air was the working fluid. The air exited from a rectangular shaped slot and impinged on the bottom surface. The Reynolds number was changed between 125 and 500. The continuity, momentum, and energy equations were solved using the finite volume method. The effect of the shape of bottom surface on heat and flow characteristics was investigated in detail. Average and local Nusselt number were calculated for each case. It was found out that Nusselt number increases by increasing the Reynolds number. The optimum conditions were established to get much more enhancement in terms of performance evaluation criterion (PEC). It was revealed that the shape of the cooling surface (bottom wall) influences the heat transfer substantially.

References

References
1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
J. P.
Hartnett
and
T. F.
Irvine
, eds.,
Elsevier
, New York, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Gori
,
F.
, and
Bossi
,
L.
,
2000
, “
On the Cooling Effect of an Air Jet Along the Surface of a Cylinder
,”
Int. Commun. Heat Mass Transfer
,
27
(
5
), pp.
667
676
.
5.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
71
80
.
6.
Lee
,
H. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2008
, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region for Different Channel Heights
,”
Int. J. Heat Mass Transfer
,
51
(
15
), pp.
4055
4068
.
7.
Chan
,
T. L.
,
Leung
,
C. W.
,
Jambunathan
,
K.
,
Ashforth-Frost
,
S.
,
Zhou
,
Y.
, and
Liu
,
M. H.
,
2002
, “
Heat Transfer Characteristics of a Slot Jet Impinging on a Semi-Circular Convex Surface
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
993
1006
.
8.
Jiang
,
Z.
,
Liu
,
C.
,
Zhang
,
X.
,
Ma
,
Q.
, and
Sun
,
Y.
,
2011
, “
Numerical Simulation of Flow and Heat Transfer From Slot Jets Impinging on a Cylindrical Convex Surface
,”
J. Therm. Sci.
,
20
(
5
), p.
460
.
9.
Lee
,
C. H.
,
Lim
,
K. B.
,
Lee
,
S. H.
,
Yoon
,
Y. J.
, and
Sung
,
N. W.
,
2007
, “
A Study of the Heat Transfer Characteristics of Turbulent Round Jet Impinging on an Inclined Concave Surface Using Liquid Crystal Transient Method
,”
Exp. Therm. Fluid Sci.
,
31
(
6
), pp.
559
565
.
10.
Lee
,
D. H.
,
Kim
,
S. J.
,
Kim
,
Y. H.
, and
Park
,
H. J.
,
2015
, “
Heat Transfer With Fully Developed Slot Jets Impinging on Confined Concave and Convex Surfaces
,”
Int. J. Heat Mass Transfer
,
88
, pp.
218
223
.
11.
Lee
,
D. H.
,
Park
,
H. J.
, and
Ligrani
,
P.
,
2012
, “
Milliscale Confined Impinging Slot Jets: Laminar Heat Transfer Characteristics for an Isothermal Flat Plate
,”
Int. J. Heat Mass Transfer
,
55
(
9
), pp.
2249
2260
.
12.
Park
,
H. J.
,
Lee
,
D. H.
, and
Ahn
,
S. W.
,
2012
, “
An Instrument for Measuring Heat Flux From an Isothermal Surface
,”
Exp. Therm. Fluid Sci.
,
37
, pp.
179
183
.
13.
Kilic
,
M.
,
Calisir
,
T.
, and
Baskaya
,
S.
,
2017
, “
Experimental and Numerical Study of Heat Transfer From a Heated Flat Plate in a Rectangular Channel With an Impinging Air Jet
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
1
), pp.
329
344
.
14.
Kadiyala
,
P. K.
, and
Chattopadhyay
,
H.
,
2018
, “
Numerical Analysis of Heat Transfer From a Moving Surface Due to Impingement of Slot Jets
,”
Heat Transfer Eng.
,
39
(
2
), pp.
98
106
.
15.
Imbriale
,
M.
,
Ianiro
,
A.
,
Meola
,
C.
, and
Cardone
,
G.
,
2014
, “
Convective Heat Transfer by a Row of Jets Impinging on a Concave Surface
,”
Int. J. Therm. Sci.
,
75
, pp.
153
163
.
16.
Pachpute
,
S.
, and
Premachandran
,
B.
,
2018
, “
Slot Air Jet Impingement Cooling Over a Heated Circular Cylinder With and Without a Flow Confinement
,”
Appl. Therm. Eng.
,
132
, pp.
352
367
.
17.
Zhang
,
Y.
,
Wang
,
S.
,
Chen
,
K.
, and
Ding
,
P.
,
2018
, “
Effect of Slot-Jet Position on the Cooling Performance of the Hybrid Trapezoid Channel and Impingement Module
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1205
1217
.
18.
Yang
,
G.
,
Choi
,
M.
, and
Lee
,
J. S.
,
1999
, “
An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2199
2209
.
19.
Kim
,
Y. H.
,
Lee
,
D. H.
, and
Han
,
S. H.
,
2017
, “
Investigation of Impingement Surface Geometry Effects on Heat Transfer in a Laminar Confined Impinging Slot Jet
,”
Int. J. Heat Mass Transfer
,
115
, pp.
347
353
.
20.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
,
Murthy
,
J. Y.
, and
Abraham
,
J. P.
,
2009
,
Handbook of Numerical Heat Transfer
,
Wiley
, New York.
21.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
, Boca Raton, FL.
22.
Vesteeg
,
H.
, and
Malalasekera
,
W.
,
1995
, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Wiley, New York.
23.
De Lemos
,
M. J. S.
, and
Fischer
,
C.
,
2008
, “
Thermal Analysis of an Impinging Jet on a Plate With and Without a Porous Layer
,”
Numer. Heat Transfer, Part A
,
54
(
11
), pp.
1022
1041
.
24.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer
,
113
(
3
), pp.
571
582
.
You do not currently have access to this content.