This study examines the effects of viscous and porous dissipation on entropy generation in the viscoelastic fluid flow induced by a linearly stretching surface. Analysis of mass transfer is also performed. Consideration of rheological characteristics of viscoelastic fluid in the energy conservation law and entropy generation number in terms of viscous dissipation makes a striking difference in the energy equation and entropy generation number for Newtonian and viscoelastic fluid. This important concern which is yet not properly attended is also be examined in the present study. The dimensional governing equations are reduced to a set of self-similar differential equations. The energy and concentration equations are solved exactly by employing the Laplace transform technique. The obtained exact solutions of reduced set of governing equations are utilized to compute the entropy generation number. To analyze the impacts of flow parameter on velocity profile, temperature distribution, concentration profile, and entropy generation number inside the boundary layer, graphs are plotted and discussed physically. The permeability and viscoelastic parameters have strong influence on the entropy generation in the vicinity of stretching surface.

References

References
1.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
1998
,
Thermodynamics an Engineering Approach
,
McGraw-Hill
,
New York
.
2.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
3.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
4.
Bandelli
,
R.
, and
Rajagopal
,
K. R.
,
1995
, “
Start-Up Flows of Second Grade Fluids in Domains With One Finite Dimension
,”
Int. J. Non-Linear Mech.
,
30
, pp.
817
839
.
5.
Dunn
,
J. E.
, and
Rajagopal
,
K. R.
,
1995
, “
Fluid of Differential Type: Critical Review and Thermodynamic Analysis
,”
Int. J. Eng. Sci.
,
33
, pp.
689
729
.
6.
Rajagopal
,
K. R.
, and
Kaloni
,
P. N.
,
1989
,
Continuum Mechanics and Its Applications
,
Hemisphere Press
,
Washington, DC
.
7.
Cortell
,
R.
,
2006
, “
Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade Over a Stretching Sheet Subject to Suction and to a Transverse Magnetic Field
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1851
1856
.
8.
Gorder
,
R. A. V.
, and
Vajravelu
,
K.
,
2010
, “
Hydromagnetic Stagnation Point Flow of a Second-Grade Fluid Over a Stretching Sheet, Mechanical
,”
Res. Commun.
,
37
, pp.
113
118
.
9.
Hsiao
,
K. L.
,
2010
, “
Mixed Convection With Radiation Effect Over a Nonlinearly Stretching Sheet
,”
Int. J. Mech. Mechatronics Eng.
,
4
(
2
), pp.
164
168
.https://waset.org/publications/11853/mixed-convection-with-radiation-effect-over-a-nonlinearly-stretching-sheet
10.
Hsiao
,
K. L.
,
2010
, “
Conjugate Heat Transfer Over an Unsteady Stretching Sheet Mixed Convection With Magnetic Effect
,”
Int. J. Mech. Mechatronics Eng.
,
4
, pp.
157
163
.
11.
Ramzan
,
M.
,
Bilal
,
M.
,
Farooq
,
U.
, and
Chung
,
J. D.
,
2016
, “
Mixed Convective Radiative Flow of Second Grade Nanofluid With Convective Boundary Conditions: A Optimal Solution
,”
Results Phys.
,
6
, pp.
796
804
.
12.
Rashidi
,
M. M.
,
Vishnu Ganesh
,
N.
,
Abdul Hakeem
,
A. K.
, and
Ganga
,
B.
,
2014
, “
Buoyancy Effect on MHD Flow of Nanofluid Over a Stretching Sheet in the Presence of Thermal Radiation
,”
J. Mol. Liq.
,
198
, pp.
234
238
.
13.
Sahoo
,
B.
,
2010
, “
Effects of Slip, Viscous Dissipation and Joule Heating on the MHD Flow and Heat Transfer of a Second-Grade Fluid Past a Radially Stretching Sheet
,”
Appl. Math. Mech.-Engl. Ed.
,
31
(
2
), pp.
159
173
.
14.
Khan
,
S. K.
,
2006
, “
Boundary Layer Viscoelastic Fluid Flow Over an Exponentially Stretching Sheet
,”
Int. J. Appl. Mech. Eng.
,
11
(
2
), pp.
321
335
.http://www.ijame.uz.zgora.pl/ijame_files/archives/v11PDF/n2/321-335_Article_08.pdf
15.
Abel
,
M. S.
,
Siddheshwar
,
P. G.
, and
Nandeppanavar
,
M. M.
,
2007
, “
Heat Transfer in a Viscoelastic Boundary Layer Flow Over a Stretching Sheet With Viscous Dissipation and Non-Uniform Heat Source
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
960
966
.
16.
Ali
,
F.
,
Khan
,
I.
, and
Shafie
,
S.
,
2014
, “
Closed Form Solutions for Unsteady Free Convection Flow of a Second Grade Fluid Over an Oscillating Vertical Plate
,”
Plos One
,
9
(
2
), p.
e85099
.
17.
Abel
,
M. S.
, and
Begum
,
G.
,
2008
, “
Heat Transfer in MHD Viscoelastic Fluid Flow on Stretching Sheet With Heat Source/Sink, Viscous Dissipation, Stress Work, and Radiation for the Case of Large Prandtl Number
,”
Chem. Eng. Commun.
,
195
, pp.
1503
1523
.
18.
Akinbobola
,
T. E.
, and
Okoya
,
S. S.
,
2015
, “
The Flow of Second Grade Fluid Over a Stretching Sheet With Variable Thermal Conductivity and Viscosity in the Presence of Heat Source/Sink
,”
J. Nigerian Math. Soc.
,
34
(
3
), pp.
331
342
.
19.
Goyal
,
M.
, and
Bhargava
,
R.
,
2015
, “
Thermodiffusion Effects on Boundary Layer Flow of Viscoelastic Nanofluids Over a Stretching Sheet With Viscous Dissipation and Non-Uniform Heat Source Using hp-Finite Element Method
,”
J. Nanoeng. Nanosyst.
,
230
, pp.
124
140
.
20.
Khan
,
Z. H.
,
Qasim
,
M.
,
Ishfaq
,
N.
, and
Khan
,
W. A.
,
2017
, “
Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid With Weak Concentration Over a Stretching/Shrinking Sheet
,”
Commun. Theor. Phys.
,
67
(
4
), pp.
449
457
.
21.
Mushtaq
,
M.
,
Asghar
,
S.
, and
Hossain
,
M. A.
,
2007
, “
Mixed Convection Flow of Second Grade Fluid along a Vertical Stretching Flat Surface With Variable Surface Temperature
,”
Heat Mass Transfer
,
43
, pp.
1049
1061
.https://link.springer.com/article/10.1007/s00231-006-0177-8
22.
Khan
,
W. A.
, and
Rashad
,
A. M.
,
2017
, “
Combined Effects of Radiation and Chemical Reaction on Heat and Mass Transfer by MHD Stagnation-Point Flow of a Micropolar Fluid Towards a Stretching Surface
,”
J. Nigerian Math. Soc.
,
36
, pp.
219
238
.https://ojs.ictp.it/jnms/index.php/jnms/article/view/95
23.
Goyal
,
M.
, and
Bhargava
,
R.
,
2014
, “
Boundary Layer Flow and Heat Transfer of Viscoelastic Nanofluids past a Stretching Sheet With Partial Slip Conditions
,”
Appl. Nanosci.
,
4
(
6
), pp.
761
767
.
24.
Hsiao
,
K. L.
,
2010
, “
Heat and Mixed Convection for MHD Viscoelastic Fluid past a Stretching Sheet With Ohmic Dissipation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
7
), pp.
1803
1812
.
25.
Adesanya
,
S. O.
, and
Makinde
,
O. D.
,
2015
, “
Effects of Couple Stresses on Entropy Generation Rate in a Porous Channel With Convective Heating
,”
Comput. Appl. Math.
,
34
(
1
), pp.
293
307
.
26.
Makinde
,
O. D.
,
2012
, “
Entropy for MHD Boundary Layer Flow and Heat Transfer Over a Flat Plate With a Convective Surface Boundary Condition
,”
Int. J. Exergy
,
10
(
2
), pp.
142
154
.
27.
Butt
,
A. S.
, and
Ali
,
A.
,
2014
, “
Entropy Analysis of Magnetohydrodynamic Flow and Heat Transfer Due to Stretching Cylinder
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
3
), pp.
780
786
.
28.
Govindaraju
,
M.
,
Ganga
,
B.
, and
Abdul Hakeem
,
A. K.
,
2017
, “
Second Law Analysis on Radiative Slip Flow of Nanofluids Over a Stretching Sheet in the Presence of Lorentz Force and Heat Generation/Absorption
,”
Front. Heat Mass Transfer
,
8
, pp.
1
8
.
29.
Qasim
,
M.
, and
Afridi
,
M. I.
,
2018
, “
Effects of Energy Dissipation and Variable Thermal Conductivity on Entropy Generation Rate in Mixed Convection Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
, p.
044501
.
30.
Rashidi
,
M. M.
,
Mohammadi
,
F.
,
Abbasbandy
,
S.
, and
Alhuthali
,
M. S.
,
2015
, “
Entropy Generation Analysis for Stagnation Point Flow in a Porous Medium Over a Permeable Stretching Surface
,”
J. Appl. Fluid Mech.
,
8
, pp.
753
765
.
31.
Aziz
,
A.
, and
Khan
,
W. A.
,
2012
, “
Entropy Generation in an Asymmetrically Cooled Slab With Temperature-Dependent Internal Heat Generation
,”
Heat Transfer—Asian Res.
,
41
(
3
), pp.
260
271
.
32.
Afridi
,
M. I.
, and
Qasim
,
M.
,
2018
, “
Entropy Generation and Heat Transfer in Boundary Layer Flow Over a Thin Needle Moving in a Parallel Stream in the Presence of Nonlinear Rosseland Radiation
,”
Int. J. Therm. Sci.
,
123
, pp.
117
128
.
33.
Afridi
,
M. I.
, and
Qasim
,
M.
,
2018
, “
Entropy Generation in Three Dimensional Flow of Dissipative Fluid
,”
Int. J. Appl. Math. Comput. Math.
,
4
, pp.
1
11
.
34.
Rashidi
,
M. M.
,
Bagheri
,
S.
,
Momoniat
,
E.
, and
Freidoonimehr
,
N.
,
2017
, “
Entropy Analysis of Convective MHD Flow of Third Grade Non-Newtonian Fluid Over a Stretching Sheet
,”
Ain Shams Eng. J.
,
8
(
1
), pp.
77
85
.
35.
Dalir
,
N.
,
2014
, “
Numerical Study of Entropy Generation for Forced Convection Flow and Heat Transfer of a Jeffery Fluid Over a Stretching Sheet
,”
Alexandria Eng. J.
,
53
(
4
), pp.
769
778
.
36.
Afridi
,
M. I.
,
Qasim
,
M.
, and
Khan
,
I.
,
2018
, “
Entropy Generation Minimization in MHD Boundary Layer Flow Over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating
,”
J. Korean Phys. Soc.
,
73
, pp.
1303
1309
.
37.
Makinde
,
O. D.
, and
Beg
,
O. A.
,
2010
, “
On Inherent Irreversibility in a Reactive Hydromagnetic Channel Flow
,”
J. Therm. Sci.
,
19
(
1
), pp.
72
79
.
38.
Dandapat
,
B. S.
, and
Gupta
,
A. S.
,
1989
, “
Flow and Heat Transfer in a Viscoelastic Fluid Over a Stretching Sheet
,”
Int. J. Non-Linear Mech.
,
24
(
3
), pp.
215
219
.
39.
Debnath
,
L.
, and
Bhatta
,
D.
,
2014
,
Transform and Their Applications
,
Chapman & Hall, Boca Raton, FL
.
40.
Bateman
,
H.
,
1954
,
Table of Integral Transforms
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.