In the present work, a numerical analysis of conjugate heat transfer and fluid flow in vortex generator (VG) enhanced double-fin and tube heat exchanger is carried out. The enhanced design aims to improve the heat transfer performance of a conventional double-fin and tube heat exchanger for waste heat recovery applications. A three-dimensional (3D) numerical model is developed using ANSYS cfx to simulate fluid flow and conjugate heat transfer process. Numerical simulations with rectangular winglet vortex generators (RWVGs) at five different angles of attack (20degα20deg) are performed for the Reynolds number range of 5000Re11,000. Salient performance characteristics are analyzed in addition to the temperature distribution and flow fields. Based on the numerical results, it is concluded that the overall performance of the double-fin and tube heat exchanger can be improved by 27–91% by employing RWVGs at α=20deg for the range of Reynolds number investigated. The study provides useful design information and necessary performance data that can be adopted for the design development of the heat exchanger at a lower manufacturing cost.

References

References
1.
Singh
,
S.
,
Sørensen
,
K.
, and
Condra
,
T. J.
,
2017
, “
Investigation of Material Efficient Fin Patterns for Cost-Effective Operation of Fin and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
126
(
11
), pp.
903
914
.
2.
Bergles
,
A. E.
,
Webb
,
R. L.
, and
Junkhan
,
G. H.
,
1979
, “
Energy Conservation Via Heat Transfer Enhancement
,”
Energy
,
4
(
2
), pp.
193
200
.
3.
Bergles
,
A. E.
,
1997
, “
Heat Transfer Enhancement—The Encouragement and Accommodation of High Heat Fluxes
,”
ASME J. Heat Transfer
,
119
(
1
), pp.
8
19
.
4.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Review of Single-Phase Heat Transfer Enhancement Techniques for Application in Microchannels, Minichannels and Microdevices
,”
Int. J. Heat Technol.
,
22
(
2
), pp.
3
11
.
5.
Bergles
,
A. E.
,
2002
, “
ExHFT for Fourth Generation Heat Transfer Technology
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
335
344
.
6.
Garimella
,
S. V.
, and
Eibeck
,
P. A.
,
1991
, “
Enhancement of Single Phase Convective Heat Transfer From Protruding Elements Using Vortex Generators
,”
Int. J. Heat Mass Transfer
,
34
(
9
), pp.
2431
2433
.
7.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.
8.
Urkiola
,
A.
,
Fernandez-Gamiz
,
U.
,
Errasti
,
I.
, and
Zulueta
,
E.
,
2017
, “
Computational Characterization of the Vortex Generated by a Vortex Generator on a Flat Plate for Different Vane Angles
,”
Aerosp. Sci. Technol.
,
65
, pp.
18
25
.
9.
Ghanem
,
A.
,
Habchi
,
C.
,
Lemenand
,
T.
,
Valle
,
D. D.
, and
Peerhossaini
,
H.
,
2013
, “
Energy Efficiency in Process Industry-High-Efficiency Vortex (HEV) Multifunctional Heat Exchanger
,”
Renewable Energy
,
56
, pp.
96
104
.
10.
Biswas
,
G.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
37
(
2
), pp.
283
291
.
11.
Fiebig
,
M.
,
1995
, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
376
388
.
12.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
,
1994
, “
Local Heat Transfer and Flow Losses in Fin-and-Tube Heat Exchangers With Vortex Generators: A Comparison of Round and Flat Tubes
,”
Exp. Therm. Fluid Sci.
,
8
(
1
), pp.
35
45
.
13.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1992
, “
Flow Structure and Heat Transfer in a Channel With Multiple Longitudinal Vortex Generators
,”
Exp. Therm. Fluid Sci.
,
5
(
4
), pp.
425
436
.
14.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1993
, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2327
2337
.
15.
Fiebig
,
M.
,
Valencia
,
A.
, and
Mitra
,
N. K.
,
1993
, “
Wing-type Vortex Generators for Fin-and-Tube Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
7
(
4
), pp.
287
295
.
16.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
17.
He
,
J. J.
,
Liu
,
L. L.
, and
Jacobi
,
A. M.
,
2010
, “
Air-Side Heat-Transfer Enhancement by a New Winglet-Type Vortex Generator Array in a Plain-Fin Round-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071801
.
18.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
295
309
.
19.
Turk
,
A. Y.
, and
Junkhan
,
G. H.
,
1986
, “
Heat Transfer Enhancement Downstream of Vortex Generators on a Flat Plate
,”
Eighth International Heat Transfer Conference
, San Francisco, CA, Aug. 17–22, pp.
2903
2908
.
20.
Jang
,
J. Y.
,
Hsu
,
L. F.
, and
Leu
,
J. S.
,
2013
, “
Optimization of the Span Angle and Location of Vortex Generators in a Plate-Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
67
, pp.
432
444
.
21.
Liou
,
T. M.
,
Chen
,
C. C.
, and
Tsai
,
T. W.
,
2000
, “
Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
327
335
.
22.
Li
,
L.
,
Du
,
X.
,
Zhang
,
Y.
,
Yang
,
L.
, and
Yang
,
Y.
,
2015
, “
Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Int. J. Therm. Sci.
,
92
, pp.
85
96
.
23.
Chu
,
P.
,
He
,
Y. L.
,
Lei
,
Y. G.
,
Tian
,
L. T.
, and
Li
,
R.
,
2009
, “
Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
859
876
.
24.
Tian
,
L.
,
He
,
Y.
,
Chu
,
P.
, and
Tao
,
W.
,
2009
, “
Numerical Study of Flow and Heat Transfer Enhancement by Using Delta Winglets in a Triangular Wavy Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
131
(
9
), p.
091901
.
25.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
26.
Chen
,
Y.
,
Fiebig
,
M.
, and
Mitra
,
N. K.
,
2000
, “
Heat Transfer Enhancement of Finned Oval Tubes With Staggered Punched Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
417
435
.
27.
Zhang
,
T.
,
Haung
,
Z. Q.
,
Zhang
,
X. B.
, and
Liu
,
C. J.
,
2016
, “
Numerical Investigation of Heat Transfer Using a Novel Punched Vortex Generator
,”
Numer. Heat Transfer, Part A: Appl.
,
69
(
10
), pp.
1150
1168
.
28.
He
,
Y. L.
,
Han
,
H.
,
Tao
,
W. Q.
, and
Zang
,
Y. W.
,
2012
, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5449
5458
.
29.
Tian
,
X. L.
,
Jin
,
H.
,
Song
,
K. W.
,
Wang
,
L. C.
,
Liu
,
S.
, and
Wang
,
L. B.
,
2018
, “
Effects of Fin Pitch and Tube Diameter on the Air-Side Performance of Tube Bank Fin Heat Exchanger With the Fins Punched Plane and Curved Rectangular Vortex Generators
,”
Exp. Heat Transfer
,
31
(
4
), pp.
297
316
.
30.
Välikangas
,
T.
,
Singh
,
S.
,
Sørensen
,
K.
, and
Condra
,
T. J.
,
2018
, “
Fin-and-Tube Heat Exchanger Enhancement With a Combined Herringbone and Vortex Generator Design
,”
Int. J. Heat Mass Transfer
,
118
, pp.
602
616
.
31.
Tao
,
W. Q.
,
He
,
Y. L.
,
Wang
,
Q. W.
,
Qu
,
Z. G.
, and
Song
,
F. Q.
,
2002
, “
A Unified Analysis on Enhancing Single Phase Convective Heat Transfer With Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4871
4879
.
32.
Cheng
,
Y. P.
,
Qu
,
Z. G.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2004
, “
Numerical Design of Efficient Slotted Fin Surface Based on the Field Synergy Principle
,”
Numer. Heat Transf. Part A Appl.
,
45
(
6
), pp.
517
538
.
33.
Cheng
,
Y. P.
,
Lee
,
T. S.
, and
Low
,
H. T.
,
2007
, “
Numerical Analysis of Periodically Developed Fluid Flow and Heat Transfer Characteristics in the Triangular Wavy Fin-and-Tube Heat Exchanger Based on Field Synergy Principle
,”
Numer. Heat Transfer, Part A: Appl., Int. J. Comput. Methodology
,
53
(
8
), pp.
821
842
.
34.
Jia
,
H.
,
Liu
,
Z. C.
,
Liu
,
W.
, and
Nakayama
,
A.
,
2014
, “
Convective Heat Transfer Optimization Based on Minimum Entransy Dissipation in the Circular Tube
,”
Int. J. Heat Mass Transfer
,
73
, pp.
124
129
.
35.
Wang
,
J.
,
Liu
,
Z.
,
Yuan
,
F.
,
Liu
,
W.
, and
Chen
,
G.
,
2015
, “
Convective Heat Transfer Optimization in a Circular Tube Based on Local Exergy Destruction Minimization
,”
Int. J. Heat Mass Transfer
,
90
, pp.
49
57
.
36.
Yu
,
H.
,
Wen
,
J.
,
Xu
,
G.
, and
Li
,
H.
,
2016
, “
Theoretically and Numerically Investigation About the Novel Evaluating Standard for Convective Heat Transfer Enhancement Based on the Entransy Theory
,”
Int. J. Heat Mass Transfer
,
98
, pp.
183
192
.
37.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator—Part A: Verification of Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1179
1191
.
38.
Singh
,
S.
,
Sørensen
,
K.
, and
Condra
,
T. J.
,
2016
, “
Influence of the Degree of Thermal Contact in Fin and Tube Heat Exchanger: A Numerical Analysis
,”
Appl. Therm. Eng.
,
107
(
25
), pp.
612
624
.
39.
Singh
,
S.
,
Sørensen
,
K.
, and
Condra
,
T. J.
,
2016
, “
Parametric CFD Analysis to Study the Influence of Fin Geometry on the Performance of a Fin and Tube Heat Exchanger
,”
Nineth Eurosim Congress on Modelling and Simulation (EUROSIM)
, Oulu, Finland, Sept. 12–16, pp. 135–140.
40.
Singh
,
S.
,
Sørensen
,
K.
,
Simonsen
,
A. S.
, and
Condra
,
T. J.
,
2017
, “
Implications of Fin Profiles on Overall Performance and Weight Reduction of a Fin and Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
115
, pp.
962
976
.
41.
Chen
,
H. T.
, and
Lai
,
J. R.
,
2012
, “
Study of Heat-Transfer Characteristics on the Fin of Two-Row Plate Finned-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4088
4095
.
42.
Jin
,
Y.
,
Tang
,
G. H.
,
He
,
T. L.
, and
Tao
,
W. Q.
,
2013
, “
Parametric Study and Field Synergy Principle Analysis of H-Type Finned Tube Bank With 10 Rows
,”
Int. J. Heat Mass Transfer
,
60
, pp.
241
251
.
43.
Jin
,
Y.
,
Yu
,
Z. Q.
,
Tang
,
G. H.
,
He
,
T. L.
, and
Tao
,
W. Q.
,
2016
, “
Parametric Study and Multiple Correlations of an H-Type Finned Tube Bank in a Fully Developed Region
,”
Numer. Heat Transfer, Part A: Appl.
,
70
(
1
), pp.
64
78
.
44.
Kazi
,
S. N.
,
2015
, “
Heat Transfer Studies and Applications
,”
IntechOpen
,
London, UK
.
45.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-u Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.
46.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
38
(
8
), pp.
1598
1605
.
47.
Nagaosa
,
R. S.
,
2017
, “
Turbulence Model-Free Approach for Predictions of Air Flow Dynamics and Heat Transfer in a Fin-and-Tube Exchange
,”
Energy Convers. Manage.
,
142
, pp.
414
425
.
48.
Hirsch
,
C.
,
1991
,
Numerical Computation of Internal and External Flows
, Vol.
2
,
Wiley
, New York.
49.
Barbosa
,
J. R.
, Jr.
,
Hermes
,
C. J. L.
, and
Melo
,
C.
,
2010
, “
CFD Analysis of Tube-Fin “No-Frost” Evaporators
,”
J. Braz. Soc. Mech. Sci. Eng.
,
32
(
4
), pp.
445
453
.
50.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
, pp. 625–632.
51.
Woelke
,
M.
,
2007
, “
Eddy Viscosity Turbulence Models Employed by Computational Fluid Dynamic
,”
Prace Instytutu Lotnictwa
, Scientific Publishers of the Institute of Aviation, Warsaw, Poland, pp.
92
113
.
52.
ANSYS CFX,
2018, “
High-Performance Computational Fluid Dynamics (CFD) Software Tool
,” ANSYS, Canonsburg, PA, assessed Jan. 05, 2018, http://www.ansys.com/products/fluids/ansys-cfx
53.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington DC
.
54.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
55.
Chen
,
H.
,
Wang
,
Y.
,
Zhao
,
Q.
,
Ma
,
H.
,
Li
,
Y.
, and
Chen
,
Z.
,
2014
, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-Type Finned Tube Banks
,”
Energies
,
7
(
11
), pp.
7094
7104
.
56.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchangers
,
3rd ed.
,
Krieger Publishing Company
,
Malabar, FL
.
57.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.
58.
Tian
,
L. T.
,
He
,
Y. L.
,
Lei
,
Y. G.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Fluid Flow and Heat Transfer in a Flat Plate Channel With Longitudinal Vortex Generators by Applying Field Synergy Principle Analysis
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
111
120
.
59.
Shah
,
R. K.
, and
London
,
A. L.
,
1971
, “
Laminar Flow Forced Convection Heat Transfer and Flow Friction in Straight and Curved Ducts—A Summary of Analytical Solutions
,” Department of Mechanical Engineering, Stanford University, Stanford, CA, Technical Report No.
75
.
60.
Leu
,
J. S.
,
Wu
,
Y. H.
, and
Jang
,
J. Y.
,
2004
, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4327
4338
.
You do not currently have access to this content.