Abstract

Heat transfer characteristics in a latticework duct with various sidewalls are numerically investigated. The crossing angle is 90 deg and the number of subchannels is eleven on both the pressure side and suction side for each latticework duct. The thickness of the ribs is 8 mm and the distance between adjacent ribs is 24 mm. The investigation is conducted for various Reynolds numbers (11,000 to 55,000) and six different sidewalls. Flow structure, pressure drop, and heat transfer characteristics are analyzed. Results revealed that the sidewall has significant effects on heat transfer and flow structure. The triangle-shaped sidewall provides the highest Nusselt number accompanied by the highest friction factor. The sidewall with a slot shows the lowest friction factor and Nusselt number. An increased slot width decreased the Nusselt number and friction factor simultaneously.

References

References
1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.10.1115/1.4023826
2.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2019
, “
Flow Structure and Heat Transfer Characteristics in a 90-Deg Turned Pin Fined Duct With Different Dimple/Protrusion Depths
,”
Appl. Therm. Eng.
,
146
, pp.
826
842
.10.1016/j.applthermaleng.2018.10.052
3.
Laroche
,
E.
,
Fenot
,
M.
,
Dorignac
,
E.
,
Vuillerme
,
J. J.
,
Brizzi
,
L. E.
, and
Larroya
,
J. C.
,
2018
, “
A Combined Experimental and Numerical Investigation of the Flow and Heat Transfer Inside a Turbine Vane Cooled by Jet Impingement
,”
ASME J. Turbomach.
,
140
(
3
), p.
031002
.10.1115/1.4038411
4.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2018
, “
Experimental and Numerical Investigation of Heat and Fluid Flow in a Square Duct Featuring Criss-Cross Rib Patterns
,”
Appl. Therm. Eng.
,
128
, pp.
415
425
.10.1016/j.applthermaleng.2017.09.036
5.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2019
, “
Dynamics of Coherent Structures and Random Turbulence in Pressure Side Film Cooling on a First Stage Turbine Vane
,”
ASME J. Turbomach.
,
141
(
1
), p.
011003
.10.1115/1.4041602
6.
Tsuru
,
T.
,
Ishida
,
K.
,
Fujita
,
J.
, and
Takeishi
,
K.
,
2019
, “
Three-Dimensional Visualization of Flow Characteristics Using a Magnetic Resonance Imaging in a Lattice Cooling Channel
,”
ASME J. Turbomach.
,
141
(
6
), p.
061003
.10.1115/1.4041908
7.
Gillespie
,
D. R.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2000
, “
Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,”
ASME
Paper No. 2000-GT-0653.10.1115/2000-GT-0653
8.
Saha
,
K.
,
Guo
,
S.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2008
, “
Heat Transfer and Pressure Measurements in a Lattice-Cooled Trailing Edge of a Turbine Airfoil
,”
ASME
Paper No. GT2008-51324.10.1115/GT2008-51324
9.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2013
, “
Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011001
.10.1115/1.4007277
10.
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness—Part 1: Stationary Channel Experiments
,”
ASME
Paper No. GT2004-54157.10.1115/GT2004-54157
11.
Deng
,
H.
,
Wang
,
K.
,
Zhu
,
J.
, and
Pan
,
W.
,
2013
, “
Experimental Study on Heat Transfer and Flow Resistance in Improved Latticework Cooling Channels
,”
J. Therm. Sci.
,
22
(
3
), pp.
250
256
.10.1007/s11630-013-0620-3
12.
Bu
,
S.
,
Yang
,
L.
,
Qiu
,
H.
,
Luan
,
Y.
, and
Sun
,
H.
,
2017
, “
Effect of Sidewall Slots and Pin Fins on the Performance of Latticework Cooling Channel for Turbine Blades
,”
Appl. Therm. Eng.
,
117
, pp.
275
288
.10.1016/j.applthermaleng.2017.01.110
13.
Acharya
,
S.
,
Zhou
,
F.
,
Lagrone
,
J.
,
Mahmood
,
G.
, and
Bunker
,
R. S.
,
2004
, “
Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments
,”
ASME J. Turbomach.
,
127
(
3
), pp.
471
478
.10.1115/1.1860381
14.
Oh
,
I. T.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Park
,
J. S.
, and
Cho
,
H. H.
,
2012
, “
Local Heat/Mass Transfer and Friction Loss Measurement in a Rotating Matrix Cooling Channel
,”
ASME J. Heat Transfer
,
134
(
1
), p.
011901
.10.1115/1.4004853
15.
Carcasci
,
C.
,
Facchini
,
B.
,
Pievaroli
,
M.
,
Tarchi
,
L.
,
Ceccherini
,
A.
, and
Innocenti
,
L.
,
2015
, “
Heat Transfer and Pressure Drop Measurements on Rotating Matrix Cooling Geometries for Airfoil Trailing Edges
,”
ASME
Paper No. GT2015-42594.10.1115/GT2015-42594
16.
Hagari
,
T.
, and
Ishida
,
K.
,
2013
, “
Numerical Investigation on Flow and Heat Transfer in a Lattice (Matrix) Cooling Channel
,”
ASME
Paper No. GT2013-95412.10.1115/GT2013-95412
17.
Bu
,
S.
,
Yang
,
Z.
,
Zhang
,
W.
,
Liu
,
H.
, and
Sun
,
H.
,
2016
, “
Research on the Thermal Performance of Matrix Cooling Channel With Response Surface Methodology
,”
Appl. Therm. Eng.
,
109
, pp.
75
86
.10.1016/j.applthermaleng.2016.08.005
18.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
,
Liu
,
J.
, and
Sunden
,
B.
,
2019
, “
Heat Transfer and Flow Structure in a Detached Latticework Duct
,”
Appl. Therm. Eng.
,
155
, pp.
24
39
.10.1016/j.applthermaleng.2019.03.148
19.
Ramireddy
,
S. R.
,
Gurusiddappa
,
S. P.
,
Kesavan
,
V.
, and
Kumar
,
S. K.
,
2014
, “
Computational Study of Flow and Heat Transfer in Matrix Cooling Channels
,”
ASME
Paper No. GTINDIA2014-8252.10.1115/GTINDIA2014-8252
20.
Du
,
W.
,
Luo
,
L.
,
Wang
,
S.
, and
Zhang
,
X.
,
2018
, “
Effect of the Dimple Location and Rotating Number on the Heat Transfer and Flow Structure in a Pin Finned Channel
,”
Int. J. Heat Mass Transfer
,
127
, pp.
111
129
.10.1016/j.ijheatmasstransfer.2018.08.045
21.
Kiijarvi
,
J.
,
2011
, “
Darcy Friction Factor Formulae in Turbulent Pipe Flow
,” Lunowa* Fluid Mechanics, July 29, Paper No. 110727, pp.
1
11
.
You do not currently have access to this content.