Abstract

Following the link of work of He and Cao (2009, Math. Comput. Modell., 49(7–8), 1719–1720), we employ the theory of generalized thermoelasticity with dual-phase-lag (DPL) to study the transient phenomena in a thin slim strip due to a moving heat source. Both ends of the strip are assumed to be fixed and thermally insulated. Using Laplace transform as a tool, the problem has been transformed into the space-domain and solved analytically. Finally, solutions in the real-time domain are obtained by applying the inverse Laplace transform. Numerical calculation for stress, displacement, and temperature within the strip are carried out and presented graphically. The effect of moving heat source speed on temperature, stress, and displacement is studied. The temperature, displacement, and stress in the strip are found to be decreasing at large source speed.

References

1.
Biot
,
M. A.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
(
3
), pp.
240
253
.10.1063/1.1722351
2.
Lord
,
H. W.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.10.1016/0022-5096(67)90024-5
3.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elast.
,
2
(
1
), pp.
1
7
.10.1007/BF00045689
4.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1992
, “
On Undamped Heat Waves in an Elastic Solid
,”
J. Therm. Stresses
,
15
(
2
), pp.
253
264
.10.1080/01495739208946136
5.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1993
, “
Thermoelasticity Without Energy Dissipation
,”
J. Elast.
,
31
(
3
), pp.
189
208
.10.1007/BF00044969
6.
Tzou
,
D. Y.
,
2014
,
Macro-to-Microscale Heat Transfer: The Lagging Behavior
,
Wiley
,
Hoboken, NJ
.
7.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro-to Micro-Scales
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
8.
Tzou
,
D. Y.
,
1995
, “
Experimental Support for the Lagging Behavior in Heat Propagation
,”
J. Thermophys. Heat Transfer
,
9
(
4
), pp.
686
693
.10.2514/3.725
9.
Chandrasekharaiah
,
D. S.
,
1986
, “
Thermoelasticity With Second Sound: A Review
,”
ASME Appl. Mech. Rev.
,
39
(
3
), pp.
355
376
.10.1115/1.3143705
10.
Wang
,
L.
,
Zhou
,
X.
, and
Wei
,
X.
,
2007
,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer Science & Business Media,
Berlin.
11.
Wang
,
L.
, and
Wei
,
X.
,
2009
, “
Heat Conduction in Nanofluids
,”
Chaos, Solitons Fractals
,
39
(
5
), pp.
2211
2215
.10.1016/j.chaos.2007.06.072
12.
Wang
,
L.
, and
Wei
,
X.
,
2008
, “
Equivalence Between Dual-Phase-Lagging and Two-Phasesystem Heat Conduction Processes
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1751
1756
.10.1016/j.ijheatmasstransfer.2007.07.013
13.
Kang
,
Z. X.
, and
Wang
,
L. Q.
,
2017
, “
Effect of Thermal-Electric Cross Coupling on Heat Transport in Nanofluids
,”
Energies
,
10
(
1
), p.
123
.10.3390/en10010123
14.
Liu
,
K. C.
, and
Chen
,
H. T.
,
2010
, “
Investigation for the Dual Phase Lag Behavior of Bio-Heat Transfer
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1138
1146
.10.1016/j.ijthermalsci.2010.02.007
15.
Liu
,
K. C.
, and
Lin
,
C. T.
,
2010
, “
Solution of an Inverse Heat Conduction Problem in a Bilayered Spherical Tissue
,”
Numer. Heat Transfer Appl.
,
58
(
10
), pp.
802
818
.10.1080/10407782.2010.523329
16.
Liu
,
K. C.
,
Wang
,
Y.-N.
, and
Chen
,
Y.-S.
,
2012
, “
Investigation on the Bio-Heat Transfer With the Dual-Phase-Lag Effect
,”
Int. J. Therm. Sci.
,
58
, pp.
29
35
.10.1016/j.ijthermalsci.2012.02.026
17.
Udayraj
,
P.
,
Talukdar
,
R.
,
Alagirusamy
., and
Das
,
A.
,
2014
, “
Heat Transfer Analysis and Second Degree Burn Prediction in Human Skin Exposed to Flame and Radiant Heat Using Dual Phase Lag Phenomenon
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1068
1079
.10.1016/j.ijheatmasstransfer.2014.07.073
18.
Vadasz
,
P.
,
2005
, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Heat Conduction
,”
Transp. Porous Media
,
59
(
3
), pp.
341
355
.10.1007/s11242-004-1801-z
19.
Al-Huniti
,
N. S.
,
Al-Nimr
,
M. A.
, and
Naji
,
M.
,
2001
, “
Dynamic Response of a Rod Due to a Moving Heat Source Under the Hyperbolic Heat Conduction Model
,”
J. Sound Vib.
,
242
(
4
), pp.
629
640
.10.1006/jsvi.2000.3383
20.
He
,
T.
, and
Cao
,
L.
,
2009
, “
A Problem of Generalized Magneto-Thermoelastic Thin Slim Strip Subjected to a Moving Heat Source
,”
Math. Comput. Modell.
,
49
(
7–8
), pp.
1710
1720
.10.1016/j.mcm.2008.12.004
21.
Youssef
,
H. M.
,
2009
, “
Generalized Thermoelastic Infinite Medium With Cylindrical Cavity Subjected to Moving Heat Source
,”
Mech. Res. Commun.
,
36
(
4
), pp.
487
496
.10.1016/j.mechrescom.2008.12.004
22.
Youssef
,
H. M.
,
2010
, “
Two-Temperature Generalized Thermoelastic Infinite Medium With Cylindrical Cavity Subjected to Moving Heat Source
,”
Arch. Appl. Mech.
,
80
(
11
), pp.
1213
1224
.10.1007/s00419-009-0359-1
23.
Sarkar
,
N.
, and
Lahiri
,
A.
,
2013
, “
Interactions Due to Moving Heat Sources in Generalized Thermoelastic Half-Space Using LS Model
,”
Int. J. Appl. Mech. Eng.
,
18
(
3
), pp.
815
831
.10.2478/ijame-2013-0049
24.
Zhang
,
P.
, and
He
,
T.
,
2018
, “
A Generalized Thermoelastic Problem With Nonlocal Effect and Memory-Dependent Derivative When Subjected to a Moving Heat Source
,”
Waves Random Complex Medium
, epub.10.1080/17455030.2018.1490043
25.
Barber
,
J. R.
,
1984
, “
Thermoelastic Displacements and Stresses Due to a Heat Source Moving Over the Surface of a Half Plane
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
636
640
.10.1115/1.3167685
26.
He
,
T.
,
Cao
,
L.
, and
Li
,
S.
,
2007
, “
Dynamic Response of a Piezoelectric Rod With Thermal Relaxation
,”
J. Sound Vib.
,
306
(
3–5
), pp.
897
907
.10.1016/j.jsv.2007.06.018
27.
Sarkar
,
N.
, and
Mondal
,
S.
,
2019
, “
Transient Responses in a Two-Temperature Thermoelastic Infinite Medium Having Cylindrical Cavity Due to Moving Heat Source With Memory-Dependent Derivative
,”
Z. Angew. Math. Mech.
,
99
(
6
), p.
e201800343
.10.1002/zamm.201800343
28.
Mondal
,
S.
,
2019
, “
Interactions Due to a Moving Heat Source in a Thin Slim Rod Under Memory-Dependent Dual-Phase Lag Magneto-Thermo-Visco-Elasticity
,”
Mech. Time-Depend. Mater.
, epub.10.1007/s11043-019-09418-z
29.
Zakian
,
V.
,
1970
, “
Optimisation of Numerical Inversion of Laplace Transforms
,”
Electron. Lett.
,
6
(
21
), pp.
677
679
.10.1049/el:19700471
30.
Hassanzadeh
,
H.
, and
Pooladi-Darvish
,
M.
,
2007
, “
Comparison of Different Numerical Laplace Inversion Methods for Engineering Applications
,”
Appl. Math. Comput.
,
189
(
2
), pp.
1966
1981
.10.1016/j.amc.2006.12.072
You do not currently have access to this content.