Abstract

Transient thermal behaviors of ultra-supercritical steam turbine control valves during the cold start warm-up process of steam turbine systems were comprehensively studied using conjugate heat transfer (CHT) simulation. The geometrical configurations and boundary conditions used in simulation were identical to the field setup in a thermal power plant. The simulated temperature variations were first validated using measurements by the flush-mounted thermocouples inside the solid valve bodies. The CHT simulation implementing the shear stress transport (SST) turbulence model demonstrated good agreement with the field data, and the overall numerical errors were below 10%; however, the numerical errors of the simulation, which used empirical heat transfer coefficients at the fluid–solid interfaces, reached 40%. The determined temperature differences between the cold valve bodies with the hot steam flow decreased significantly. Specifically, the temperature differences along the inner wall surfaces of the valve bodies decreased to less than 50 °C. Further investigation of the transient heat flux distributions and Nusselt number distributions confirmed that the unsteady flow behaviors, such as the alternating oscillations of the annular wall-attached jet, the central reverse flow and the intermediate shear layer instabilities, enhanced the fluid–solid heat convection process and thus contributed to the warming up of the solid valve bodies.

References

1.
Mirandola
,
A.
,
Stoppato
,
A.
, and
Casto
,
E. L.
,
2010
, “
Evaluation of the Effects of the Operation Strategy of a Steam Power Plant on the Residual Life of Its Devices
,”
Energy
,
35
(
2
), pp.
1024
1032
.10.1016/j.energy.2009.06.024
2.
Mutama
,
K. R.
,
2013
, “
Some Aspects of Steam Turbine Valves: Materials, Operations and Maintenance
,”
ASME
Paper No. POWER2013-98289.10.1115/POWER2013-98289
3.
Stoppato
,
A.
,
Mirandola
,
A.
,
Meneghetti
,
G.
, and
Casto
,
E. L.
,
2012
, “
On the Operation Strategy of Steam Power Plants Working at Variable Load: Technical and Economic Issues
,”
Energy
,
37
(
1
), pp.
228
236
.10.1016/j.energy.2011.11.042
4.
Banaszkiewicz
,
M.
,
2014
, “
Steam Turbines Start-Ups
,”
Trans. Inst. Fluid-Flow Mach.
,
126
, pp.
169
198
.
5.
Rusin
,
A.
,
1992
, “
Numerical Simulation of Turbine Valve Creep
,”
Arch. Appl. Mech.
,
62
(
6
), pp.
386
393
.10.1007/BF00804599
6.
Kostenko
,
Y.
,
Lvov
,
G.
,
Gorash
,
E.
,
Altenbach
,
H.
, and
Naumenko
,
K.
,
2006
, “
Power Plant Component Design Using Creep-Damage Analysis
,”
ASME
Paper No. IMECE2006-13710.10.1115/IMECE2006-13710
7.
Xu
,
S. H.
,
Hu
,
Z. Q.
,
He
,
J.
,
Xiao
,
L.
, and
Jiang
,
P. N.
,
2014
, “
Numerical Investigations of History Temperature and Stress Field of Main Steam Valve
,”
ASME
Paper No. GT2014-2606910.1115/GT2014-26069
8.
Payten
,
W. M.
,
Wei
,
T.
,
Snowden
,
K. U.
,
Bendeich
,
P.
,
Law
,
M.
, and
Charman
,
D.
,
2011
, “
Crack Initiation and Crack Growth Assessment of a High Pressure Steam Chest
,”
Int. J. Pressure Vessels Piping
,
88
(
1
), pp.
34
44
.10.1016/j.ijpvp.2010.11.003
9.
Wang
,
W.
,
Xu
,
S.
, and
Liu
,
Y.
,
2017
, “
Numerical Investigation of Creep–Fatigue Behavior in a Steam Turbine Inlet Valve Under Cyclic Thermomechanical Loading
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112502
.10.1115/1.4036953
10.
Chen
,
Z. B.
,
Li
,
G. Q.
,
Zhang
,
H.
, and
Chen
,
C. Y.
,
2009
, “
Fatigue Life Prediction of Regulating Valves on the Intermediate-Pressure Section of a 400 MW Steam Turbine
,”
Eng. Failure Anal.
,
16
(
5
), pp.
1483
1492
.10.1016/j.engfailanal.2008.09.033
11.
Zanazzi
,
G.
,
Baumgartner
,
F.
,
Rice
,
T.
,
Pengue
,
F.
,
Mokulys
,
T.
,
Ridoutt
,
C.
, and
Sell
,
M.
,
2014
, “
Experimental and Numerical Investigation in to the Aerodynamics of a Novel Steam Turbine Valve and Its Field Application
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091601
.10.1115/1.4026860
12.
Zaryankin
,
A. E.
,
Zroichikov
,
N. A.
,
Paramonov
,
A. N.
,
Noskov
,
V. V.
, and
Grigor'ev
,
E. Y.
,
2012
, “
Pressure Pulsations in the Turbine Steam-Admission Path and Their Influence on the Vibration State of the Turbine Control Valves
,”
Therm. Eng.
,
59
(
2
), pp.
106
112
.10.1134/S0040601512020176
13.
Zeng
,
L.
,
Liu
,
G.
,
Mao
,
J.
,
Yuan
,
Q.
,
Wang
,
S.
,
Wei
,
L.
, and
Wang
,
Z.
,
2015
, “
A Novel Numerical Simulation Method to Verify Turbulence Models for Predicting Flow Patterns in Control Valves
,”
J. Fluid Sci. Technol.
,
10
(
1
), p.
JFST0007
.10.1299/jfst.2015jfst0007
14.
Zeng
,
L.
,
Liu
,
G.
,
Mao
,
J.
,
Wang
,
S.
,
Zhang
,
C.
, and
Yu
,
X.
,
2014
, “
Research on the Coupling Mechanism Between Alternating Flow Pattern and Valve Stem System of Steam Turbine Control Valve
,”
ASME
Paper No. GT2014-26988.10.1115/GT2014-26988
15.
Domnick
,
C. B.
,
Benra
,
F.-K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Time-Variant Flow Field and Dynamic Forces Acting in Steam Turbine Inlet Valves
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081601
.10.1115/1.4029309
16.
Domnick
,
C. B.
,
Benra
,
F.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Vibration of Steam Turbine Inlet Valves and the Feedback to the Dynamic Flow Field
,”
ASME
Paper No. GT2015-42182.10.1115/GT2015-42182
17.
Domnick
,
C. B.
,
Benra
,
F.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2017
, “
Investigation on Flow-Induced Vibrations of a Steam Turbine Inlet Valve Considering Fluid–Structure Interaction Effects
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022507
.10.1115/1.4034352
18.
Wang
,
P.
, and
Liu
,
Y. Z.
,
2017
, “
Unsteady Flow Behavior of a Steam Turbine Control Valve in the Choked Condition: Field Measurement, Detached Eddy Simulation and Acoustic Modal Analysis
,”
Appl. Therm. Eng.
,
117
, pp.
725
739
.10.1016/j.applthermaleng.2017.02.087
19.
Wang
,
P.
,
Ma
,
H.
, and
Liu
,
Y.
,
2018
, “
Unsteady Behaviors of Steam Flow in a Control Valve With T-Junction Discharge Under the Choked Condition: Detached Eddy Simulation and Proper Orthogonal Decomposition
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081104
.10.1115/1.4039254
20.
Wang
,
P.
,
Ma
,
H.
, and
Liu
,
Y.
,
2019
, “
Proper Orthogonal Decomposition and Extended- Proper Orthogonal Decomposition Analysis of Pressure Fluctuations and Vortex Structures Inside a Steam Turbine Control Valve
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041035
.10.1115/1.4040903
21.
Bowie
,
G.
,
Fletcher
,
A.
,
Reed
,
G.
,
Davenport
,
L.
, and
Hugill
,
P.
,
2013
, “
Comparison of Metal Temperatures Obtained From Conjugate Heat Transfer CFD Analysis and Thermal Finite Element Analysis of a Valve
,”
ASME
Paper No. PVP2013-97467.10.1115/PVP2013-97467
22.
Ayed
,
A. H.
,
Kemper
,
M.
,
Kusterer
,
K.
,
Tadesse
,
H.
,
Wirsum
,
M.
,
Nordheim
,
D. V.
,
Tebbenhoff
,
O.
,
Czychon
,
K.-H.
,
Metzger
,
K.
, and
Bohn
,
D.
,
2015
, “
Numerical and Experimental Investigations of the Transient Thermal Behavior of a Steam By-Pass Valve at Steam Temperature Beyond 700 °C
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011015
.10.1115/1.4029040
23.
Kho
,
T.
, and
Müller-Steenhagen
,
H.
,
1999
, “
An Experimental and Numerical Investigation of Heat Transfer Fouling and Fluid Flow in Flat Plate Heat Exchangers
,”
Chem. Eng. Res. Des.
,
77
(
2
), pp.
124
130
.10.1205/026387699526007
24.
Bohn
,
D.
,
Krueger
,
U.
, and
Kusterer
,
K.
,
2001
, “
Conjugate Heat Transfer: An Advanced Computational Method for the Cooling Design of Modern Gas Turbine Blades and Vanes
,”
Heat Transfer in Gas Turbines
,
B.
Sunden
and
M.
Faghri
, eds.,
WIT Press
,
Southampton, U.K
., pp.
58
108
.
25.
Alizadeh
,
S.
,
Mabilat
,
C.
,
Jackson
,
D.
, and
Clarkson
,
R.
,
2008
, “
Conjugate Heat Transfer Study of a Biaxial Rig: Application to the Lifting of HP Turbine Disc Firtrees
,”
ASME
Paper No. GT2008-51297.
26.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2006
, “
CFD Simulations and Experiments of Flow Fluctuations Around a Steam Control Valve
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
48
54
.10.1115/1.2375123
27.
Incropera
,
F.
, and
Dewitt
,
D.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
28.
Wang
,
P.
, and
Liu
,
Y. Z.
,
2017
, “
Influence of a Circular Strainer on Unsteady Flow Behavior in Steam Turbine Control Valves
,”
Appl. Therm. Eng.
,
115
, pp.
463
476
.10.1016/j.applthermaleng.2016.12.073
29.
Dhir
,
V.
, and
Lienhard
,
J.
,
1971
, “
Laminar Film Condensation on Plane and Axisymmetric Bodies in Nonuniform Gravity
,”
ASME J. Heat Transfer
,
93
(
1
), pp.
97
100
.10.1115/1.3449773
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
289
.10.2514/3.12149
31.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,” Turbul., Heat Mass Transfer, 4(1), pp.
625
632
.
32.
Newman
,
B. G.
,
1961
, “
Boundary Layer and Flow Control
,”
The Deflection of Plane Jets by Adjacent Boundary Layers—Coanda Effect
,
G. V.
Lachman
, ed.,
Pergamon Press
,
New York,
pp.
232
251
.
33.
Lubert
,
C. P.
,
2010
, “
On Some Recent Applications of the Coanda Effect to Acoustics
,”
J. Acoust. Soc. Am.
,
128
(
4
), p.
2286
.10.1121/1.3508016
34.
Wang
,
P.
,
Ma
,
H.
,
Quay
,
B.
,
Santavicca
,
D. A.
, and
Liu
,
Y.
,
2018
, “
Computational Fluid Dynamics of Steam Flow in a Turbine Control Valve With a Bell-Shaped Spindle
,”
Appl. Therm. Eng.
,
129
, pp.
1333
1347
.10.1016/j.applthermaleng.2017.10.104
35.
Domnick
,
C. B.
,
Brillert
,
D.
,
Musch
,
C.
, and
Benra
,
F. K.
,
2017
, “
Clarifying the Physics of Flow Separations in Steam Turbine Inlet Valves at Part Load Operation and Improved Design Considerations
,”
ASME J. Fluids Eng.
,
139
(
8
), p. 081105–1.10.1115/1.4036263
36.
Illyas
,
S. M.
,
Bapu
,
B. R. R.
, and
Rao
,
V. V. S.
,
2018
, “
Heat Transfer and Flow Visualization of Swirling Impinging Jet on Flat Surface Using Helicoid Inserts
,”
J. Visualization
,
21
(
5
), pp.
1
21
.10.1007/s12650-018-0493-3
37.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
1985
, “
Forced Convention Internal Flow in Ducts
,”
Handbook of Heat Transfer Fundamentals
, 2nd ed.,
McGraw-Hill
,
New York,
pp.
46
87
.
38.
Kays
,
W. M.
, and
Leung
,
E. Y.
,
1963
, “
Heat Transfers in Annular Passages—Hydrodynamically Developed Turbulent Flow With Arbitrary Prescribed Heat Flux
,”
Int. J. Heat Mass Transfer
,
6
(
7
), pp.
537
557
.10.1016/0017-9310(63)90012-7
39.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
565
.10.1016/S0065-2717(08)70153-9
40.
Waddell
,
A. M.
,
Punch
,
J.
,
Stafford
,
J.
, and
Jeffers
,
N.
,
2016
, “
A Visualization of the Flow and Heat Transfer From an Oblique Impinging Jet Generated in a Square Miniature Channel
,”
J. Visualization
,
19
(
1
), pp.
11
14
.10.1007/s12650-015-0305-y
You do not currently have access to this content.