Abstract

This paper presents the results of a numerical study for using a simple insertion to reduce the heat transfer through an air-filled square cavity when subjected to a temperature gradient. The insertion is a rectangular sheet folded in a special way to produce the shape of a rotated letter G. The insertion is thermally conductive, and in perfect contact with the walls of the cavity. The cavity has thick conductive walls. The two outer vertical sides of the cavity are isothermal, and the two horizontal sides are adiabatic. The solution of continuity, momentum, and energy equations for this system yields the isotherms, streamlines, and heat flux transported across the cavity. The insertion suppresses the convection currents inside the cavity and hence reduces the heat transfer rate across them. The analysis shows the effect of the insertion dimensions and thermal properties on the heat transfer rate through the cavity. This paper also presents the results of using this insertion inside the holes of an ordinary building brick. The insertion is an easy tool to manufacture and a simple device to use for reducing the heat transfer through the blocks. The G insertion reduces the heat flux by 27–42%.

References

1.
Saudi Electricity Company,
2016
, “
Annual Report Saudi Electricity Company
,” Riyad, Saudi Arabia, accessed Sept. 6,
2019
, https://www.se.com.sa/en-us/invshareholder/Pages/ReportAndPresentations.aspx
2.
dos Santos
,
G. H.
,
Fogiatto
,
M. A.
, and
Mendes
,
N.
,
2017
, “
Numerical Analysis of Thermal Transmittance of Hollow Concrete Blocks
,”
J. Build. Phys.
,
41
(
1
), pp.
7
24
.10.1177/1744259117698522
3.
Saudi Electricity Company
,
2014
, “
The Guide for Thermal Insulation in Buildings
,” Saudi Electricity Company, Riyad, Saudi Arabia, accessed Sept. 6, 2019, https://www.se.com.sa/en-us/Pages/ThermalInsulationinBuildings.aspx
4.
Bouchair
,
A.
,
2008
, “
Steady State Theoretical Model of Fired Clay Hollow Bricks for Enhanced External Wall Thermal Insulation
,”
Build. Environ.
,
43
(
10
), pp.
1603
1618
.10.1016/j.buildenv.2007.10.005
5.
Li
,
L. P.
,
Wu
,
Z. G.
,
Li
,
Z. Y.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Thermal Optimization of the Configuration of Multi-Holed Clay Bricks Used for Constructing Building Walls by the Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3669
3682
.10.1016/j.ijheatmasstransfer.2007.06.008
6.
Karatas
,
H.
, and
Derbentli
,
T.
,
2017
, “
Natural Convection in Rectangular Cavities With One Active Vertical Wall International
,”
J. Heat Mass Transfer
,
105
, pp.
305
315
.10.1016/j.ijheatmasstransfer.2016.09.100
7.
Sutcu
,
M.
,
del Coz Díaz
,
J. J.
,
Pedro
,
F.
,
Rabanal
,
A.
,
Gencel
,
O.
, and
Akkurt
,
S.
,
2014
, “
Thermal Performance Optimization of Hollow Clay Bricks Made Up of Paper Waste
,”
Energy Build.
,
75
, pp.
96
108
.10.1016/j.enbuild.2014.02.006
8.
Tang
,
D. L.
,
Li
,
L. P.
,
Song
,
C. F.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2015
, “
Numerical Thermal Analysis of Applying Insulation Material to Holes in Hollow Brick Walls by the Finite Volume Method
,”
Numer. Heat Transfer, Part A
,
68
(
5
), pp.
526
547
.10.1080/10407782.2014.986396
9.
Li
,
A.
,
Xu
,
X.
,
Xie
,
J.
, and
Sun
,
J.
,
2016
, “
Development of a Simplified Heat Transfer Model of Hollow Blocks by Using Finite Element Method in Frequency Domain
,”
Energy Build.
,
111
, pp.
76
86
.10.1016/j.enbuild.2015.09.004
10.
Al-Hazmy
,
M.
,
2006
, “
Analysis of Coupled Natural Convection-Conduction Effect of Heat Transport Through Hollow Building Blocks
,”
Energy Build.
,
38
(
5
), pp.
515
521
.10.1016/j.enbuild.2005.08.010
11.
Mezrhad
,
A.
,
Bouali
,
H.
,
Amaoui
,
H.
, and
Bouzidi
,
M.
,
2006
, “
Computation of Combined Natural Convection and Radiation Heat-Transfer in a Cavity Having a Square Body at Its Center
,”
Appl. Energy
,
83
, pp.
1004
1023
.10.1016/j.apenergy.2005.09.006
12.
Corvaro
,
F.
,
Nardini
,
G.
,
Paroncini
,
M.
, and
Vitali
,
R.
,
2015
, “
PIV and Numerical Analysis of Natural Convective Heat Transfer and Fluid Flow in a Square Cavity With Two Vertical Obstacles
,”
Int. J. Heat Technol.
,
33
(
2
), pp.
51
56
.10.18280/ijht.330208
13.
da Silva
,
A. K.
, and
Gosselin
,
L.
,
2005
, “
On the Thermal Performance of an Internally Finned Three-Dimensional Cubic Enclosure in Natural Convection
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
540
546
.10.1016/j.ijthermalsci.2004.11.011
14.
Elatar
,
A.
,
Teamah
,
M.
, and
Hassab
,
M.
,
2016
, “
Numerical Study of Laminar Natural Convection Inside Square Enclosure With Single Horizontal Fin
,”
Int. J. Therm. Sci.
,
99
, pp.
41
51
.10.1016/j.ijthermalsci.2015.08.003
15.
Bilgen
,
E.
,
2002
, “
Natural Convection in Enclosures With Partial Partitions
,”
Renewable Energy
,
26
(
2
), pp.
257
270
.10.1016/S0960-1481(00)00206-8
16.
Tong
,
T.
, and
Gerner
,
F.
,
1986
, “
Natural Convection in Partitioned Air-Filled Rectangular Enclosures
,”
Int. Commun. Heat Mass Transfer
,
13
(
1
), pp.
99
108
.10.1016/0735-1933(86)90076-X
17.
Vasic
,
S.
,
Hanjalic
,
K.
, and
Peric
,
M.
,
1991
, “
Computation of Free Convective Flow and Heat Transfer in Solar Heated Partitioned Enclosures
,” Proceedings of International Center of Heat and Mass Transfer (ICHMT), Hemisphere Publishing, New York, pp.
707
716
.
18.
Alhazmy
,
M.
,
2010
, “
Internal Baffles to Reduce the Natural Convection in the Voids of Hollow Blocks
,”
Build. Simul.
,
3
(
2
), pp.
125
137
.10.1007/s12273-010-0003-6
19.
Costa
,
V. F. A.
,
2012
, “
Natural Convection in Partially Divided Square Enclosures: Effects of Thermal Boundary Conditions and Thermal Conductivity of the Partitions
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7812
7822
.10.1016/j.ijheatmasstransfer.2012.08.004
20.
Bajorek
,
S.
, and
Lloyd
,
J.
,
1982
, “
Experimental Investigation of Natural Convection in Partitioned Enclosures
,”
ASME J. Heat Transfer
,
104
(
3
), pp.
527
532
.10.1115/1.3245125
21.
Zimmerman
,
E.
, and
Acharya
,
S.
,
1987
, “
Free Convection Heat Transfer in a Partially Divided Vertical Enclosure With Conducting End Walls
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
319
331
.10.1016/0017-9310(87)90120-7
22.
Alhazmy
,
M. M.
,
2010
, “
Numerical Investigation on Using Inclined Partitions to Reduce Natural Convection Inside the Cavities of Hollow Bricks
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2201
2210
.10.1016/j.ijthermalsci.2010.06.009
23.
Khatamifar
,
M.
,
Lin
,
W.
,
Armfield
,
M. M.
,
Holmes
,
D.
, and
Kirkpatrick
,
M. P.
,
2017
, “
Conjugate Natural Convection Heat Transfer in a Partitioned Differentially-Heated Square Cavity
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
92
103
.10.1016/j.icheatmasstransfer.2016.12.003
24.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
25.
ANSYS
,
2017
, “
ANSYS Fluent User Guide
,” ANSYS, Lebanon, NH.
26.
Ait-Taleb
,
T.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2014
, “
Simulation of Coupled Heat Transfers in a Hollow Tile With Two Vertical and Three Horizontal Uniform Rectangular Cavities Heated From Below or Above
,”
Energy Build.
,
84
, pp.
628
632
.10.1016/j.enbuild.2014.09.010
27.
Karatas
,
H.
, and
Derbentli
,
T.
,
2018
, “
Natural Convection and Radiation in Rectangular Cavities With One Active Vertical Wall
,”
Int. J. Therm. Sci.
,
123
, pp.
129
139
.10.1016/j.ijthermalsci.2017.09.006
28.
De Vahl Davis
,
G.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
.10.1002/fld.1650030305
29.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
545
551
.10.1016/0017-9310(76)90168-X
30.
Nishimura
,
T.
,
Shiraishi
,
M.
,
Nagasawa
,
F.
, and
Kawamura
,
Y.
,
1988
, “
Natural Convection Heat Transfer in Enclosures With Multiple Vertical Partitions
,”
Int. J. Heat Mass Transfer
,
31
(
8
), pp.
1679
1686
.10.1016/0017-9310(88)90280-3
31.
Antar
,
M.
, and
Baig
,
H.
,
2009
, “
Conjugate Conduction-Natural Convection Heat Transfer in a Hollow Building Block
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3716
3720
.10.1016/j.applthermaleng.2009.04.033
You do not currently have access to this content.