Abstract

The energy pile technology has been widely used, and the solid cylindrical heat source (SCS) model is usually adopted to describe the heat transfer process between the energy pile and the surrounding soil. This paper investigates the SCS model with a convective boundary condition (SCS-3 model), and realistic conditions such as transversely isotropic ground and groundwater flow are all included in the model. An analytical solution for the problem is established using Green's function method and the theory of moving heat sources. Solutions for the SCS model with a boundary condition of the first kind (SCS-1 model) and for the line source (LS) model with a convective boundary condition (LS-3 model) are recovered as special cases of the solution in this paper. Computational examples are presented, and comparisons between different models are made. First, the SCS-1 model is compared with the SCS-3 model, showing the error caused by neglecting the surface convective effect. Second, the LS-3 model is compared with the SCS-3 model, showing the error associated with neglecting the size of heat source. The effects of groundwater flow velocity and convective heat transfer coefficient on the temporal and spatial variations of these errors are also investigated.

References

1.
Yu
,
M. Z.
,
Diao
,
N. R.
,
Su
,
D. C.
, and
Fang
,
Z. H.
,
2002
, “
A Pilot Project of the Closed-Loop Ground Source Heat Pump System in China
,”
Proceedings of the IEA Seventh Heat Pump Conference
, Beijing, China, May 19–22, pp.
356
364
.
2.
Spitler
,
J. D.
,
2005
, “
Ground-Source Heat Pump System Research Past, Present and Future
,”
HVAC R Res.
,
11
, pp.
165
167
.10.1080/10789669.2005.10391132
3.
Li
,
M.
, and
Lai
,
A. C.
,
2015
, “
Review of Analytical Models for Heat Transfer by Vertical Ground Heat Exchangers (GHEs): A Perspective of Time and Space Scales
,”
Appl. Energy
,
151
, pp.
178
191
.10.1016/j.apenergy.2015.04.070
4.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Claremore Press
,
Oxford, UK
.
5.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
.
6.
Zhou
,
Y.
,
Hu
,
X. X.
,
Li
,
T.
,
Zhang
,
D. H.
, and
Zhou
,
G. Q.
,
2018
, “
Similarity Type of General Solution for One-Dimensional Heat Conduction in the Cylindrical Coordinate
,”
Int. J. Heat Mass Transfer
,
119
, pp.
542
550
.10.1016/j.ijheatmasstransfer.2017.11.131
7.
Zhou
,
Y.
,
Wang
,
Y. J.
, and
Wang
,
J. Z.
,
2015
, “
Analytical Solution for Nonlinear Infinite Line Source Problem With Temperature-Dependent Thermal Properties
,”
Heat Mass Transfer
,
51
(
1
), pp.
143
152
.10.1007/s00231-014-1406-1
8.
Eskilson
,
P.
,
1987
, “
Thermal Analysis of Heat Extraction Boreholes
,” Doctoral thesis, Department of Mathematical Physics, University of Lund, Lund, Sweden.
9.
Zeng
,
H. Y.
,
Diao
,
N. R.
, and
Fang
,
Z. H.
,
2002
, “
A Finite Line-Source Model for Boreholes in Geothermal Heat Exchangers
,”
Heat Transfer Asian Res.
,
31
(
7
), pp.
558
567
.10.1002/htj.10057
10.
Diao
,
N. R.
,
Zeng
,
H. Y.
, and
Fang
,
Z. H.
,
2004
, “
Improvement in Modeling of Heat Transfer in Vertical Ground Heat Exchangers
,”
HVAC R Res.
,
10
, pp.
459
470
.10.1080/10789669.2004.10391114
11.
Lamarche
,
L.
, and
Beauchamp
,
B.
,
2007
, “
A New Contribution to the Finite Line-Source Model for Geothermal Boreholes
,”
Energy Build
,
39
(
2
), pp.
188
198
.10.1016/j.enbuild.2006.06.003
12.
Cui
,
P.
,
Yang
,
H. X.
, and
Fang
,
Z. H.
,
2006
, “
Heat Transfer Analysis of Ground Heat Exchangers With Inclined Boreholes
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
1169
1175
.10.1016/j.applthermaleng.2005.10.034
13.
Diao
,
N. R.
,
Li
,
Q. Y.
, and
Fang
,
Z. H.
,
2004
, “
Heat Transfer in Ground Heat Exchangers With Groundwater Advection
,”
Int. J. Therm. Sci.
,
43
(
12
), pp.
1203
1211
.10.1016/j.ijthermalsci.2004.04.009
14.
Molina-Giraldo
,
N.
,
Blum
,
P.
,
Zhu
,
K.
,
Bayer
,
P.
, and
Fang
,
Z.
,
2011
, “
A Moving Finite Line Source Model to Simulate Borehole Heat Exchangers With Groundwater Advection
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2506
2513
.10.1016/j.ijthermalsci.2011.06.012
15.
Li
,
T.
,
Zhou
,
Y.
,
Shi
,
X. Y.
,
Hu
,
X. X.
, and
Zhou
,
G. Q.
,
2018
, “
Analytical Solution for the Soil Freezing Process Induced by an Infinite Line Sink
,”
Int. J. Therm. Sci.
,
127
, pp.
232
241
.10.1016/j.ijthermalsci.2018.01.013
16.
Man
,
Y.
,
Yang
,
H.
,
Diao
,
N.
,
Liu
,
J.
, and
Fang
,
Z.
,
2010
, “
A New Model and Analytical Solutions for Borehole and Pile Ground Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2593
2601
.10.1016/j.ijheatmasstransfer.2010.03.001
17.
Cui
,
P.
,
Li
,
X.
,
Man
,
Y.
, and
Fang
,
Z. H.
,
2011
, “
Heat Transfer Analysis of Pile Geothermal Heat Exchangers With Spiral Coils
,”
Appl. Energy
,
88
(
11
), pp.
4113
4119
.10.1016/j.apenergy.2011.03.045
18.
Man
,
Y.
,
Yang
,
H. X.
,
Diao
,
N. R.
,
Cui
,
P.
,
Lu
,
L.
, and
Fang
,
Z. H.
,
2011
, “
Development of Spiral Heat Source Model for Novel Pile Ground Heat Exchangers
,”
HVAC R Res.
,
17
(
6
), pp.
1075
1088
.https://www.tandfonline.com/doi/abs/10.1080/10789669.2011.610281
19.
Zhang
,
W. K.
,
Yang
,
H. X.
,
Lu
,
L.
, and
Fang
,
Z. H.
,
2012
, “
Investigation on Heat Transfer Around Buried Coils of Pile Foundation Heat Exchangers for Ground-Coupled Heat Pump Applications
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6023
6031
.10.1016/j.ijheatmasstransfer.2012.06.013
20.
Zhang
,
W. K.
,
Yang
,
H. X.
,
Lu
,
L.
, and
Fang
,
Z. H.
,
2013
, “
The Analysis on Solid Cylindrical Heat Source Model of Foundation Pile Ground Heat Exchangers With Groundwater Flow
,”
Energy
,
55
, pp.
417
425
.10.1016/j.energy.2013.03.092
21.
Zhang
,
W. K.
,
Yang
,
H. X.
,
Lu
,
L.
,
Cui
,
P.
, and
Fang
,
Z. H.
,
2014
, “
The Research on Ring-Coil Heat Transfer Models of Pile Foundation Ground Heat Exchangers in the Case of Groundwater Seepage
,”
Energy Build.
,
71
, pp.
115
128
.10.1016/j.enbuild.2013.12.016
22.
Zhang
,
W. K.
,
Yang
,
H. X.
,
Cui
,
P.
,
Lu
,
L.
,
Diao
,
N. R.
, and
Fang
,
Z. H.
,
2015
, “
Study on Spiral Source Models Revealing Groundwater Transfusion Effects on Pile Foundation Ground Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
84
, pp.
119
129
.10.1016/j.ijheatmasstransfer.2014.12.036
23.
Li
,
M.
, and
Lai
,
A. C.
,
2012
, “
Heat-Source Solutions to Heat Conduction in Anisotropic Media With Application to Pile and Borehole Ground Heat Exchangers
,”
Appl. Energy
,
96
, pp.
451
458
.10.1016/j.apenergy.2012.02.084
24.
Zhou
,
G. Q.
,
Zhou
,
Y.
, and
Zhang
,
D. H.
,
2016
, “
Analytical Solutions for Two Pile Foundation Heat Exchanger Models in a Double-Layered Ground
,”
Energy
,
112
, pp.
655
668
.10.1016/j.energy.2016.06.125
25.
Li
,
M.
, and
Lai
,
A. C.
,
2012
, “
New Temperature Response Functions (G Functions) for Pile and Borehole Ground Heat Exchangers Based on Composite-Medium Line-Source Theory
,”
Energy
,
38
(
1
), pp.
255
263
.10.1016/j.energy.2011.12.004
26.
Wang
,
D.
,
Lu
,
L.
, and
Cui
,
P.
,
2016
, “
A Novel Composite-Medium Solution for Pile Geothermal Heat Exchangers With Spiral Coils
,”
Int. J. Heat Mass Transfer
,
93
, pp.
760
769
.10.1016/j.ijheatmasstransfer.2015.10.055
27.
Rivera
,
J. A.
,
Blum
,
P.
, and
Bayer
,
P.
,
2016
, “
A Finite Line Source Model With Cauchy-Type Top Boundary Conditions for Simulating Near Surface Effects on Borehole Heat Exchangers
,”
Energy
,
98
, pp.
50
63
.10.1016/j.energy.2015.12.129
28.
Amatya
,
B. L.
,
Soga
,
K.
,
Bourne-webb
,
P. J.
,
Amis
,
T.
, and
Laloui
,
L.
,
2012
, “
Thermo-Mechanical Behaviour of Energy Piles
,”
Geotechnique
,
62
(
6
), pp.
503
519
.10.1680/geot.10.P.116
29.
Zhou
,
Y.
,
2012
, “
Heat Conduction in a Semi-Infinite Body With Power-Type Initial and Boundary Conditions
,”
Int. J. Thermophys.
,
33
(
12
), pp.
2390
2406
.10.1007/s10765-012-1341-7
30.
Cole
,
K.
,
Beck
,
J. V.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
, “
Heat Conduction Using Green's Functions
,” 2nd ed., CRC Press, Boca Raton, FL.
31.
Tao
,
L. N.
,
1989
, “
The Heat Conduction Problem With Temperature Dependent Material Properties
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
487
491
.10.1016/0017-9310(89)90136-1
32.
Olver
,
F. W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
,
2010
,
NIST Handbook of Mathematical Functions
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.