Abstract

Precise modeling of thermoelastic cracks remains challenging due to the fact that both heat flux and stress fields have singularity issue. In the previous studies, the first author proposed different types of symplectic analytical singular element (SASE) for thermal conduction and stress analysis of cracks. It has been demonstrated that these crack-tip elements of which the interior fields are defined by analytical solutions are highly accurate and efficient. However, the thermal mechanical coupling problem of crack cannot be treated with the existing SASEs. The main difficulty is that the analytical solution of the crack problem considering arbitrary temperature distribution is not available. Approximate solution may lead to significant numerical instabilities. Moreover, the construction of a crack-tip singular element for both thermal conduction and stress analysis is complicated and requires more efforts. In this study, the governing symplectic dual equation of thermoelastic crack is restudied. The analytical solution considering arbitrary temperature distribution is obtained in close form which, to the best of the authors' knowledge, has not been found before. Then, the finite element formulation of a new SASE for thermal-mechanical fracture analysis is derived analytically through a variational approach. A two-step analysis procedure is proposed to calculate the mixed mode thermal stress intensity factors (TSIFs)) and the analysis can be done on a fixed finite element mesh. Mesh refinement around the crack tip is unnecessary, and the mixed-mode TSIFs can be solved accurately without any postprocessing.

References

1.
Sih
,
G. C.
,
1965
, “
Heat Conduction in the Infinite Medium With Lines of Discontinuities
,”
ASME J. Heat Transfer
,
87
(
2
), pp.
293
298
.10.1115/1.3689092
2.
Chen
,
W. Q.
,
Ding
,
H. J.
, and
Ling
,
D. S.
,
2004
, “
Thermoelastic Field of a Transversely Isotropic Elastic Medium Containing a Penny-Shaped Crack: Exact Fundamental Solution
,”
Int. J. Solids Struct.
,
41
(
1
), pp.
69
83
.10.1016/j.ijsolstr.2003.08.020
3.
Beom
,
H. G.
, and
Lee
,
G. H.
,
2014
, “
Exact Solution for an Interface Crack Between Dissimilar Anisotropic Thermoelastic Solids Under Uniform Heat Flow
,”
Eur. J. Mech.-A/Solids
,
47
, pp.
280
287
.10.1016/j.euromechsol.2014.05.007
4.
Fu
,
J. W.
,
Chen
,
Z. T.
,
Qian
,
L. F.
, and
Hu
,
K. Q.
,
2014
, “
Transient Thermoelastic Analysis of a Solid Cylinder Containing a Circumferential Crack Using the C-V Heat Conduction Model
,”
J. Therm. Stresses
,
37
(
11
), pp.
1324
1345
.10.1080/01495739.2014.937214
5.
Yosibash
,
Z.
, and
Szabo
,
B.
,
1995
, “
Numerical Analysis of Singularities in Two Dimensions—Part 1: Computation of Eigenpairs
,”
Int. J. Numer. Methods Eng.
,
38
(
12
), pp.
2055
2082
.10.1002/nme.1620381207
6.
Omer
,
N.
,
Yosibash
,
Z.
,
Costabel
,
M.
, and
Dauge
,
M.
,
2004
, “
Edge Flux Intensity Functions in Polyhedral Domains and Their Extraction by a Quasidual Function Method
,”
Int. J. Fract.
,
29
, pp.
97
130
.10.1023/B:FRAC.0000045717.60837.75
7.
Yosibash
,
Z.
,
2012
,
Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection With Failure Initiation
,
Springer
,
Berlin
.
8.
Szabo, B. A., and Yosibash, Z., 1996, “Numerical Analysis of Singularities in Two Dimensions, Part 2: Computation of Generalized Flux/Stress Intensity Factors,” Int. J. Numerical Methods Eng., 39, pp.
409
434
.
9.
Jing
,
L.
, and
Yang
,
D. S.
,
2015
, “
Virtual Boundary Meshless With Trefftz Method for the Steady-State Heat Conduction Crack Problem
,”
Numer. Heat Transfer, Part B: Fundam.
,
68
, pp.
141
157
.10.1080/10407790.2014.992091
10.
Marin
,
L.
,
2010
, “
A Meshless Method for the Stable Solution of Singular Inverse Problems for Two-Dimensional Helmholtz-Type Equations
,”
Eng. Anal. Boundary Elem.
,
34
(
3
), pp.
274
288
.10.1016/j.enganabound.2009.03.009
11.
Marin
,
L.
,
2010
, “
Treatment of Singularities in the Method of Fundamental Solutions for Two-Dimensional Helmholtz-Type Equations
,”
Appl. Math. Modell.
,
34
(
6
), pp.
1615
1633
.10.1016/j.apm.2009.09.009
12.
Marin
,
L.
,
Lesnic
,
D.
, and
Mantič
,
V.
,
2004
, “
Treatment of Singularities in Helmholtz-Type Equations Using the Boundary Element Method
,”
J. Sound Vib.
,
278
(
1–2
), pp.
39
62
.10.1016/j.jsv.2003.09.059
13.
Mera
,
N. S.
,
Elliott
,
L.
,
Ingham
,
D. B.
, and
Lesnic
,
D.
,
2002
, “
Singularities in Anisotropic Steady‐State Heat Conduction Using a Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
53
(
10
), pp.
2413
2427
.10.1002/nme.407
14.
Mera
,
N. S.
,
Elliott
,
L.
,
Ingham
,
D. B.
, and
Lesnic
,
D.
,
2002
, “
An Iterative Algorithm for Singular Cauchy Problems for the Steady State Anisotropic Heat Conduction Equation
,”
Eng. Anal. Boundary Elem.
,
26
(
2
), pp.
157
168
.10.1016/S0955-7997(01)00089-3
15.
Shannon
,
S.
,
Yosibash
,
Z.
,
Dauge
,
M.
, and
Costabel
,
M.
,
2013
, “
Extracting Generalized Edge Flux Intensity Functions With the Quasidual Function Method Along Circular 3-D Edges
,”
Int. J. Fract.
,
181
(
1
), pp.
25
50
.10.1007/s10704-013-9817-4
16.
Gu
,
Y.
,
Chen
,
W.
, and
Fu
,
Z. J.
,
2014
, “
Singular Boundary Method for Inverse Heat Conduction Problems in General Anisotropic Media
,”
Inverse Probl. Sci. Eng.
,
22
(
6
), pp.
889
909
.10.1080/17415977.2013.840300
17.
Wei
,
X.
,
Chen
,
W.
,
Chen
,
B.
, and
Sun
,
L.
,
2015
, “
Singular Boundary Method for Heat Conduction Problems With Certain Spatially Varying Conductivity
,”
Comput. Math. Appl.
,
69
, pp.
206
222
.10.1016/j.camwa.2014.12.005
18.
Mierzwiczak
,
M.
,
Chen
,
W.
, and
Fu
,
Z. J.
,
2015
, “
The Singular Boundary Method for Steady-State Nonlinear Heat Conduction Problem With Temperature-Dependent Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
91
, pp.
205
217
.10.1016/j.ijheatmasstransfer.2015.07.051
19.
Yu
,
T. T.
,
Bui
,
T. Q.
,
Yin
,
S. H.
,
Doan
,
D. H.
,
Wu
,
C. T.
,
Do
,
T. V.
, and
Tanaka
,
S.
,
2016
, “
On the Thermal Buckling Analysis of Functionally Graded Plates With Internal Defects Using Extended Isogeometric Analysis
,”
Compos. Struct.
,
136
, pp.
684
695
.10.1016/j.compstruct.2015.11.002
20.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2010
, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics
,”
Int. J. Fract.
,
162
(
1–2
), pp.
229
244
.10.1007/s10704-010-9442-4
21.
Bobaru
,
F.
, and
Duangpanya
,
M.
,
2010
, “
The Peridynamic Formulation for Transient Heat Conduction
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4047
4059
.10.1016/j.ijheatmasstransfer.2010.05.024
22.
Bobaru
,
F.
, and
Duangpanya
,
M.
,
2012
, “
A Peridynamic Formulation for Transient Heat Conduction in Bodies With Evolving Discontinuities
,”
J. Comput. Phys.
,
231
(
7
), pp.
2764
2785
.10.1016/j.jcp.2011.12.017
23.
Barut
,
A.
,
Guven
,
I.
, and
Madenci
,
E.
,
2001
, “
Analysis of Singular Stress Fields at Junctions of Multiple Dissimilar Materials Under Mechanical and Thermal Loading
,”
Int. J. Solids Struct.
,
38
(
50–51
), pp.
9077
9109
.10.1016/S0020-7683(01)00206-2
24.
Song
,
C. M.
,
2006
, “
Analysis of Singular Stress Fields at Multi-Material Corners Under Thermal Loading
,”
Int. J. Numer. Methods Eng.
,
65
(
5
), pp.
620
652
.10.1002/nme.1456
25.
Li
,
C.
,
Ooi
,
E. T.
,
Song
,
C. M.
, and
Natarajan
,
S.
,
2015
, “
SBFEM for Fracture Analysis of Piezoelectric Composites Under Thermal Load
,”
Int. J. Solids Struct.
,
52
, pp.
114
129
.10.1016/j.ijsolstr.2014.09.020
26.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
, pp.
131
150
.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
27.
Gao
,
Y.
,
Yu
,
T. T.
,
Bui
,
T. Q.
,
Ma
,
C. P.
, and
Hirose
,
S.
,
2017
, “
SIFs Evaluation of Sharp V-Notched Fracture by XFEM and Strain Energy Approach
,”
Theor. Appl. Fract. Mech.
,
89
, pp.
35
44
.10.1016/j.tafmec.2017.01.005
28.
Kang
,
Z.
,
Bui
,
T. Q.
,
Nguyen
,
D. D.
,
Saitoh
,
T.
, and
Hirose
,
S.
,
2015
, “
An Extended Consecutive-Interpolation Quadrilateral Element (XCQ4) Applied to Linear Elastic Fracture Mechanics
,”
Acta Mech.
,
226
(
12
), pp.
3991
4015
.10.1007/s00707-015-1451-y
29.
Liu
,
X. Y.
,
Xiao
,
Q. Z.
, and
Karihaloo
,
B. L.
,
2004
, “
XFEM for Direct Evaluation of Mixed Mode SIFs in Homogeneous and Bi‐Materials
,”
Int. J. Numer. Methods Eng.
,
59
(
8
), pp.
1103
1118
.10.1002/nme.906
30.
Xiao
,
Q. Z.
, and
Karihaloo
,
B. L.
,
2006
, “
Improving the Accuracy of XFEM Crack Tip Fields Using Higher Order Quadrature and Statically Admissible Stress Recovery
,”
Int. J. Numer. Methods Eng.
,
66
(
9
), pp.
1378
1410
.10.1002/nme.1601
31.
Duflot
,
M.
,
2008
, “
The Extended Finite Element Method in Thermoelastic Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
74
(
5
), pp.
827
847
.10.1002/nme.2197
32.
Yvonnet
,
J.
,
He
,
Q. C.
,
Zhu
,
Q. Z.
, and
Shao
,
J. F.
,
2011
, “
A General and Efficient Computational Procedure for Modelling the Kapitza Thermal Resistance Based on XFEM
,”
Comput. Mater. Sci.
,
50
(
4
), pp.
1220
1224
.10.1016/j.commatsci.2010.02.040
33.
Hosseini
,
S. S.
,
Bayesteh
,
H.
, and
Mohammadi
,
S.
,
2013
, “
Thermo-Mechanical XFEM Crack Propagation Analysis of Functionally Graded Materials
,”
Mater. Sci. Eng.: A
,
561
, pp.
285
302
.10.1016/j.msea.2012.10.043
34.
Liu
,
P.
,
Yu
,
T.
,
Bui
,
T. Q.
,
Zhang
,
C. Z.
,
Xu
,
Y. P.
, and
Lim
,
C. W.
,
2014
, “
Transient Thermal Shock Fracture Analysis of Functionally Graded Piezoelectric Materials by the Extended Finite Element Method
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2167
2182
.10.1016/j.ijsolstr.2014.02.024
35.
Lim
,
C. W.
, and
Xu
,
X. S.
,
2010
, “
Symplectic Elasticity: Theory and Applications
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
050802
.10.1115/1.4003700
36.
Lim
,
C. W.
,
,
C. F.
,
Xiang
,
Y.
, and
Yao
,
W. A.
,
2009
, “
On New Symplectic Elasticity Approach for Exact Free Vibration Solutions of Rectangular Kirchhoff Plates
,”
Int. J. Eng. Sci.
,
47
(
1
), pp.
131
140
.10.1016/j.ijengsci.2008.08.003
37.
Lim
,
C. W.
,
Cui
,
S.
, and
Yao
,
W. A.
,
2007
, “
On New Symplectic Elasticity Approach for Exact Bending Solutions of Rectangular Thin Plates With Two Opposite Sides Simply Supported
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5396
5411
.10.1016/j.ijsolstr.2007.01.007
38.
Sun
,
J.
,
Xu
,
X.
, and
Lim
,
C. W.
,
2014
, “
Buckling of Functionally Graded Cylindrical Shells Under Combined Thermal and Compressive Loads
,”
J. Therm. Stresses
,
37
(
3
), pp.
340
362
.10.1080/01495739.2013.869143
39.
Li
,
R.
,
Ni
,
X.
, and
Cheng
,
G.
,
2015
, “
Symplectic Superposition Method for Benchmark Flexure Solutions for Rectangular Thick Plates
,”
J. Eng. Mech.
,
141
(
2
), p.
04014119
.10.1061/(ASCE)EM.1943-7889.0000840
40.
Li
,
R.
, and
Zhong
,
Y.
,
2011
, “
On a New Symplectic Geometry Method for Exact Bending Solutions of Orthotropic Rectangular Plates With Two Opposite Sides Clamped
,”
Acta Mech.
,
216
(
1–4
), pp.
333
343
.10.1007/s00707-010-0381-y
41.
Wang
,
J. S.
, and
Qin
,
Q. H.
,
2007
, “
Symplectic Model for Piezoelectric Wedges and Its Application in Analysis of Electroelastic Singularities
,”
Philos. Mag.
,
87
(
2
), pp.
225
251
.10.1080/14786430600941579
42.
Xu
,
C. H.
,
Rong
,
D.
,
Zhou
,
Z. H.
, and
Xu
,
X. S.
,
2017
, “
A Novel Hamiltonian-Based Method for Two-Dimensional Transient Heat Conduction in a Rectangle With Specific Mixed Boundary Conditions
,”
J. Therm. Sci. Technol.
,
12
(
2
), p.
JTST0021
.10.1299/jtst.2017jtst0021
43.
Ni
,
Y.
,
Tong
,
Z.
,
Rong
,
D.
,
Zhou
,
Z. H.
, and
Xu
,
X. S.
,
2018
, “
Accurate Thermal Buckling Analysis of Functionally Graded Orthotropic Cylindrical Shells Under the Symplectic Framework
,”
Thin-Walled Struct.
,
129
, pp.
1
9
.10.1016/j.tws.2018.03.030
44.
Leung
,
A. Y. T.
,
Xu
,
X. S.
, and
Zhou
,
Z. H.
,
2010
, “
Hamiltonian Approach to Analytical Thermal Stress Intensity Factors—Part 1: Thermal Intensity Factor
,”
J. Therm. Stresses
,
33
(
3
), pp.
262
278
.10.1080/01495730903543066
45.
Leung
,
A. Y. T.
,
Xu
,
X. S.
, and
Zhou
,
Z. H.
,
2010
, “
Hamiltonian Approach to Analytical Thermal Stress Intensity Factors—Part 2 Thermal Stress Intensity Factor
,”
J. Therm. Stresses
,
33
(
3
), pp.
279
301
.10.1080/01495730903543108
46.
Zhou
,
Z. H.
,
Xu
,
C. H.
,
Xu
,
X. S.
, and
Leung
,
A.
,
2015
, “
Finite-Element Discretized Symplectic Method for Steady-State Heat Conduction With Singularities in Composite Structures
,”
Numer. Heat Transfer, Part B: Fundam.
,
67
(
4
), pp.
302
319
.10.1080/10407790.2014.955776
47.
Zhou
,
Z. H.
,
Leung
,
A. Y. T.
,
Xu
,
X. S.
, and
Luo
,
X.
,
2014
, “
Mixed-Mode Thermal Stress Intensity Factors From the Finite Element Discretized Symplectic Method
,”
Int. J. Solids Struct.
,
51
(
21–22
), pp.
3798
3806
.10.1016/j.ijsolstr.2014.07.016
48.
Hu
,
X. F.
,
Yao
,
W. A.
, and
Yang
,
S. T.
,
2018
, “
A Symplectic Analytical Singular Element for Steady-State Thermal Conduction With Singularities in Anisotropic Material
,”
ASME J. Heat Transfer
,
140
(
9
), p.
091301
.10.1115/1.4040085
49.
Cai
,
Z. Y.
,
Hu
,
X. F.
, and
Yao
,
W. A.
,
2018
, “
Numerical Study on Bi-Material Interface Crack Using Symplectic Analytical Singular Element
,”
Eng. Fract. Mech.
,
199
, pp.
308
326
.10.1016/j.engfracmech.2018.05.033
50.
Yao
,
W. A.
,
Li
,
X.
, and
Hu
,
X. F.
,
2018
, “
Viscoelastic Crack Analysis Using Symplectic Analytical Singular Element Combining With Precise Time-Domain Algorithm
,”
Int. J. Fract.
,
214
(
1
), p.
29
.10.1007/s10704-018-0316-5
51.
Hu
,
X.
,
Bui
,
T. Q.
,
Wang
,
J.
,
Yao
,
W.
,
Ton
,
L. H. T.
,
Singh
,
I. V.
, and
Tanaka
,
S.
,
2017
, “
A New Cohesive Crack Tip Symplectic Analytical Singular Element Involving Plastic Zone Length for Fatigue Crack Growth Prediction Under Variable Amplitude Cyclic Loading
,”
Eur. J. Mech.—A/Solids
,
65
, pp.
79
90
.10.1016/j.euromechsol.2017.03.008
52.
Hu
,
X. F.
,
Shen
,
Q. S.
,
Wang
,
J. N.
,
Yao
,
W. A.
, and
Yang
,
S. T.
,
2017
, “
A Novel Size Independent Symplectic Analytical Singular Element for Inclined Crack Terminating at Bimaterial Interface
,”
Appl. Math. Modell.
,
50
, pp.
361
379
.10.1016/j.apm.2017.05.046
53.
Hu
,
X. F.
,
Gao
,
H. Y.
,
Yao
,
W. A.
, and
Yang
,
S. T.
,
2017
, “
Study on Steady-State Thermal Conduction With Singularities in Multi-Material Composites
,”
Int. J. Heat Mass Transfer
,
104
, pp.
861
870
.10.1016/j.ijheatmasstransfer.2016.09.008
54.
Hu
,
X. F.
,
Gao
,
H. Y.
,
Yao
,
W. A.
, and
Yang
,
S. T.
,
2016
, “
A Symplectic Analytical Singular Element for Steady-State Thermal Conduction With Singularities in Composite Structures
,”
Numer. Heat Transfer, Part B: Fundam.
,
70
(
5
), pp.
406
419
.10.1080/10407790.2016.1230382
55.
Hu
,
X. F.
, and
Yao
,
W. A.
,
2013
, “
A New Enriched Finite Element for Fatigue Crack Growth
,”
Int. J. Fatigue
,
48
, pp.
247
256
.10.1016/j.ijfatigue.2012.11.003
56.
Yao
,
W. A.
, and
Hu
,
X. F.
,
2011
, “
A Novel Singular Finite Element of Mixed-Mode Crack Problems With Arbitrary Crack Tractions
,”
Mech. Res. Commun.
,
38
(
3
), pp.
170
175
.10.1016/j.mechrescom.2011.03.009
57.
Chang
,
J.
, and
Xu
,
J. Q.
,
2007
, “
The Singular Stress Field and Stress Intensity Factors of a Crack Terminating at a Bimaterial Interface
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
888
897
.10.1016/j.ijmecsci.2006.11.009
You do not currently have access to this content.