Abstract

Iron ore sintering is a typical application of reactive porous media combustion (RPMC) which has been widely reported. In this work, a computational model of RPMC is developed, in which heat and mass transfer, as well as main chemical subprocesses in reactive porous media are incorporated. A gaseous-fuel injection method is examined to enable better heat pattern. However, the imbalance of heat distribution in the flow direction caused by internally recirculating heat released via a solid matrix is still problematic on energy efficiency. Through computations, it is observed that the heat pattern and melting quantity index (MQI) are sensitive on gaseous-fuel concentration, providing a possibility of improving the heat distribution imbalance. Numerical results are presented to demonstrate the benefits of fuel segregation. Finally, more reasonable heat pattern is observed by combinations of gaseous-fuel segregation with hot air and oxygen enrichment. The dynamics of gaseous/solid-fuel combustion zones caused by the hot air and oxygen enrichment would contribute to an expansion of melting zone near the inlet, producing a more reasonable and uniform heat distribution in a sintering bed.

References

1.
Cheng
,
Z. L.
,
Yang
,
J.
,
Zhou
,
L.
,
Liu
,
Y.
, and
Wang
,
Q. W.
,
2016
, “
Characteristics of Charcoal Combustion and Its Effects on Iron-Ore Sintering Performance
,”
Appl. Energy
,
161
, pp.
364
374
.10.1016/j.apenergy.2015.09.095
2.
Taira
,
K.
,
2019
, “
NOx Emission Profile Determined by In-Situ Gas Monitoring of Iron Ore Sintering During Packed-Bed Coke Combustion
,”
Fuel
,
236
, pp.
244
250
.10.1016/j.fuel.2018.09.008
3.
Yang
,
W.
,
Choi
,
S.
,
Choi
,
E. S.
,
Ri
,
D. W.
, and
Kim
,
S.
,
2006
, “
Combustion Characteristics in an Iron Ore Sintering Bed-Evaluation of Fuel Substitution
,”
Combust. Flame
,
145
(
3
), pp.
447
463
.10.1016/j.combustflame.2006.01.005
4.
Abreu
,
G. C.
,
Carvalho
,
J. A.
, Jr.,
Silva
,
B. E. C.
, and
Pedrini
,
R. H.
,
2015
, “
Operational and Environmental Assessment on the Use of Charcoal in Iron Ore Sinter Production
,”
J. Cleaner Prod.
,
101
, pp.
387
394
.10.1016/j.jclepro.2015.04.015
5.
Hou
,
P.
,
Choi
,
S.
,
Choi
,
E.
, and
Kang
,
H.
,
2011
, “
Improved Distribution of Fuel Particles in Iron Ore Sintering Process
,”
Ironmaking Steelmaking
,
38
(
5
), pp.
379
385
.10.1179/1743281211Y.0000000017
6.
Cheng
,
Z. L.
,
Yang
,
J.
,
Zhou
,
L.
,
Liu
,
Y.
, and
Wang
,
Q. W.
,
2016
, “
Sinter Strength Evaluation Using Process Parameters Under Different Conditions in Iron Ore Sintering Process
,”
Appl. Therm. Eng.
,
105
, pp.
894
904
.10.1016/j.applthermaleng.2016.03.034
7.
Nath
,
N. K.
, and
Mitra
,
K.
,
2005
, “
Mathematical Modeling and Optimization of Two-Layer Sintering Process for Sinter Quality and Fuel Efficiency Using Genetic Algorithm
,”
Mater. Manuf. Process
,
20
(
3
), pp.
335
349
.10.1081/AMP-200053418
8.
Zhao
,
J. P.
,
Loo
,
C. E.
, and
Ellis
,
B. G.
,
2016
, “
Improving Energy Efficiency in Iron Ore Sintering Through Segregation: A Theoretical Investigation
,”
ISIJ Int.
,
56
(
7
), pp.
1148
1156
.10.2355/isijinternational.ISIJINT-2015-686
9.
Machida
,
S.
,
Higuchi
,
T.
,
Oyama
,
N.
,
Sato
,
H.
,
Takeda
,
K.
,
Yamashita
,
K.
, and
Tamura
,
K.
,
2009
, “
Optimization of Coke Breeze Segregation in Sintering Bed Under High Pisolite Ore Ratio
,”
ISIJ Int.
,
49
(
5
), pp.
667
675
.10.2355/isijinternational.49.667
10.
Castro
,
J. A.
,
Nath
,
N.
,
Franca
,
A. B.
,
Guilherme
,
V. S.
, and
Sasaki
,
Y.
,
2012
, “
Analysis by Multiphase Multicomponent Model of Iron Ore Sintering Based on Alternative Steelworks Gaseous Fuels
,”
Ironmaking Steelmaking
,
39
, pp.
605
613
.10.1179/1743281212Y.0000000008
11.
Castro
,
J. A.
,
2014
, “
Model Predictions for New Iron Ore Sintering Process Technology Based on Biomass and Gaseous Fuels
,”
Adv. Mater. Res.
,
918
, pp.
136
144
.10.4028/www.scientific.net/AMR.918.136
12.
Iwami
,
Y.
,
Yamamoto
,
T.
,
Higuchi
,
T.
,
Nushiro
,
K.
,
Sato
,
M.
, and
Oyama
,
N.
,
2013
, “
Effect of Oxygen Enrichment on Sintering With Combined Usage of Coke Breeze and Gaseous Fuel
,”
ISIJ Int.
,
53
(
9
), pp.
1633
1641
.10.2355/isijinternational.53.1633
13.
Wang
,
G.
,
Wen
,
Z.
,
Lou
,
G. F.
,
Dou
,
R. F.
,
Li
,
X. W.
,
Liu
,
X. L.
, and
Su
,
F. Y.
,
2016
, “
Mathematical Modeling and Combustion Characteristic Evaluation of a Flue Gas Recirculation Iron Ore Sintering Process
,”
Int. J. Heat Mass Transfer
,
97
, pp.
964
974
.10.1016/j.ijheatmasstransfer.2016.02.087
14.
Wang
,
G.
,
Wen
,
Z.
,
Lou
,
G. F.
,
Dou
,
R. F.
,
Li
,
X. W.
,
Liu
,
X. L.
, and
Su
,
F. Y.
,
2016
, “
Mathematical Modeling of and Parametric Studies on Flue Gas Recirculation Iron Ore Sintering
,”
Appl. Therm. Eng.
,
102
, pp.
648
660
.10.1016/j.applthermaleng.2016.04.018
15.
Kang
,
H.
,
Choi
,
S.
,
Yang
,
W.
, and
Cho
,
B.
,
2011
, “
Influence of Oxygen in an Iron Ore Sintering Process
,”
ISIJ Int.
,
51
(
7
), pp.
1065
1071
.10.2355/isijinternational.51.1065
16.
Liu
,
Y.
,
Yang
,
J.
,
Wang
,
J.
,
Cheng
,
Z. L.
, and
Wang
,
Q. W.
,
2014
, “
Energy and Exergy Analysis for Waste Heat Cascade Utilization in Sinter Cooling Bed
,”
Energy
,
67
(
4
), pp.
370
380
.10.1016/j.energy.2013.11.086
17.
Singh
,
B. P.
, and
Kaviany
,
M.
,
1994
, “
Effect of Solid Conductivity on Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
37
(
16
), pp.
2579
2583
.10.1016/0017-9310(94)90295-X
18.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
, 4th ed.,
Taylor & Francis
,
Boca Raton, FL
.
19.
Zhou
,
H.
,
Zhao
,
J. P.
,
Loo
,
C. E.
,
Ellis
,
B. G.
, and
Cen
,
K. F.
,
2012
, “
Numerical Modelling of the Iron Ore Sintering Process
,”
ISIJ Int.
,
52
(
9
), pp.
1550
1558
.10.2355/isijinternational.52.1550
20.
Patisson
,
F.
,
Bellot
,
J. P.
, and
Ablitzer
,
D.
,
1990
, “
Study of Moisture Transfer During the Strand Sintering Process
,”
Metall. Mater. Trans. B
,
21
(
1
), pp.
37
47
.10.1007/BF02658114
21.
Zhao
,
J. P.
,
Loo
,
C. E.
, and
Dukino
,
R. D.
,
2015
, “
Modelling Fuel Combustion in Iron Ore Sintering
,”
Combust. Flame
,
162
(
4
), pp.
1019
1034
.10.1016/j.combustflame.2014.09.026
22.
Jensen
,
A.
,
Johnsson
,
J. E.
,
Andries
,
J.
,
Laughlin
,
K.
,
Read
,
G.
,
Mayer
,
M.
,
Baumann
,
H.
, and
Bonn
,
B.
,
1995
, “
Formation and Reduction of NOx in Pressurized Fluidized Bed Combustion of Coal
,”
Fuel
,
74
(
11
), pp.
1555
1569
.10.1016/0016-2361(95)00155-X
23.
Malico
,
I.
, and
Pereira
,
J. C. F.
,
2001
, “
Numerical Study on the Influence of Radiative Properties in Porous Media Combustion
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
951
957
.10.1115/1.1389059
24.
Zhao
,
J. P.
,
2012
, “
Numerical Modelling of the Iron Ore Sintering Process and Its Experimental Validation
,” Ph.D. thesis, Zhejiang University, Hangzhou, Zhejiang.
25.
Cheng
,
Z. L.
,
Wei
,
S. S.
,
Guo
,
Z. G.
,
Yang
,
J.
, and
Wang
,
Q. W.
,
2017
, “
Improvement of Heat Pattern and Sinter Strength at High Charcoal Proportion by Applying Ultra-Lean Gaseous Fuel Injection in Iron Ore Sintering Process
,”
J. Cleaner Prod.
,
161
, pp.
1374
1384
.10.1016/j.jclepro.2017.07.017
26.
Xu
,
A.
,
Zhao
,
T. S.
,
Shi
,
L.
, and
Xu
,
J. B.
,
2018
, “
Lattice Boltzmann Simulation of Mass Transfer Coefficients for Chemically Reactive Flows in Porous Media
,”
ASME J. Heat Transfer
,
140
(
5
), p.
052601
.10.1115/1.4038555
27.
Bai
,
X. H.
,
Kuwahara
,
F.
,
Mobedi
,
M.
, and
Nakayama
,
A.
,
2018
, “
Forced Convective Heat Transfer in a Channel Filled With a Functionally Graded Metal Foam Matrix
,”
ASME J. Heat Transfer
,
140
(
11
), p.
111702
.10.1115/1.4040613
28.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
, 4th ed.,
Elsevier
,
Amsterdam, The Netherlands
.
29.
Cheng
,
Z. L.
,
Wang
,
J. Y.
,
Wei
,
S. S.
,
Guo
,
Z. G.
,
Yang
,
J.
, and
Wang
,
Q. W.
,
2017
, “
Optimization of Energy Efficiency in Sintering Bed by Controlling the Gaseous Fuel Injecting Concentration
,”
Appl. Energy
,
207
, pp.
230
242
.10.1016/j.apenergy.2017.06.024
You do not currently have access to this content.