Abstract

We analyzed the optimal cooling channel layouts emerged from minimizing the total entropy generation ST and mean enclosure temperature T¯ in a hot enclosure subject to natural convection. The conservation of mass, momentum, and energy were solved numerically in two-dimensional (2D) space using the finite element method, and an ant colony optimization algorithm was employed to determine the optimal layouts with respect to the number of cooling channels (N) and Rayleigh number (Ra). The total allocatable cooling channel area was fixed in all cases and thus each channel area decreased with increasing N. Subsequently, we examined the heat transfer and flow characteristics based on temperature field, streamlines, and local Bejan number of each optimum and deduced the following: (1) All optimal channel layouts were symmetric about the vertical enclosure centerline; however, the optima resulting in ST,min and T¯min did not always coincide and depended heavily on the flow configuration dictated by N and Ra; (2) the competing nature between heat transfer and its irreversibility was pronounced at low Ra and N when convection and fluid friction were ineffective; and (3) the first and second law performance improved as N increased in most cases. Furthermore, results verified the global convergence and robustness of the ant colony optimization approach in solving a layout optimization problem with pure natural convection.

References

References
1.
Ostrach
,
S.
,
1972
, “
Natural Convection in Enclosures
,”
Advances in Heat Transfer
, Vol.
8
,
Elsevier
, Amsterdam, The Netherlands, pp.
161
227
.
2.
Bohn
,
M.
,
Kirkpatrick
,
A.
, and
Olson
,
D.
,
1984
, “
Experimental Study of Three-Dimensional Natural Convection High-Rayleigh Number
,”
ASME J. Heat Transfer
,
106
(
2
), pp.
339
345
.10.1115/1.3246678
3.
Warrington
,
R.
, Jr.
, and
Powe
,
R.
,
1985
, “
The Transfer of Heat by Natural Convection Between Bodies and Their Enclosures
,”
Int. J. Heat Mass Transfer
,
28
(
2
), pp.
319
330
.10.1016/0017-9310(85)90065-1
4.
Bejan
,
A.
,
Fowler
,
A. J.
, and
Stanescu
,
G.
,
1995
, “
The Optimal Spacing Between Horizontal Cylinders in a Fixed Volume Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
38
(
11
), pp.
2047
2055
.10.1016/0017-9310(94)00312-J
5.
Lacroix
,
M.
, and
Joyeux
,
A.
,
1996
, “
Coupling of Wall Conduction With Natural Convection From Heated Cylinders in a Rectangular Enclosure
,”
Int. Commun. Heat Mass Transfer
,
23
(
1
), pp.
143
151
.10.1016/0735-1933(95)00092-5
6.
Moukalled
,
F.
, and
Acharya
,
S.
,
1996
, “
Natural Convection in the Annulus Between Concentric Horizontal Circular and Square Cylinders
,”
J. Thermophys. Heat Transfer
,
10
(
3
), pp.
524
531
.10.2514/3.820
7.
Ha
,
M. Y.
,
Kim
,
I.-K.
,
Yoon
,
H. S.
,
Yoon
,
K. S.
,
Lee
,
J. R.
,
Balachandar
,
S.
, and
Chun
,
H. H.
,
2002
, “
Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure With a Square Body
,”
Numer. Heat Transfer, Part A
,
41
(
2
), pp.
183
210
.10.1080/104077802317221393
8.
Da Silva
,
A.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2004
, “
Optimal Distribution of Discrete Heat Sources on a Wall With Natural Convection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
203
214
.10.1016/j.ijheatmasstransfer.2003.07.007
9.
Merrikh
,
A. A.
, and
Lage
,
J. L.
,
2005
, “
Natural Convection in an Enclosure With Disconnected and Conducting Solid Blocks
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1361
1372
.10.1016/j.ijheatmasstransfer.2004.09.043
10.
Mezrhab
,
A.
,
Jami
,
M.
,
Abid
,
C.
,
Bouzidi
,
M.
, and
Lallemand
,
P.
,
2006
, “
Lattice-Boltzmann Modelling of Natural Convection in an Inclined Square Enclosure With Partitions Attached to Its Cold Wall
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
456
465
.10.1016/j.ijheatfluidflow.2005.11.002
11.
Bazylak
,
A.
,
Djilali
,
N.
, and
Sinton
,
D.
,
2006
, “
Natural Convection in an Enclosure With Distributed Heat Sources
,”
Numer. Heat Transfer, Part A
,
49
(
7
), pp.
655
667
.10.1080/10407780500343798
12.
De
,
A. K.
, and
Dalal
,
A.
,
2006
,“
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4608
4623
.10.1016/j.ijheatmasstransfer.2006.04.020
13.
Bilgen
,
E.
, and
Yedder
,
R. B.
,
2007
, “
Natural Convection in Enclosure With Heating and Cooling by Sinusoidal Temperature Profiles on One Side
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
139
150
.10.1016/j.ijheatmasstransfer.2006.06.027
14.
Kim
,
B.
,
Lee
,
D.
,
Ha
,
M.
, and
Yoon
,
H.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1888
1906
.10.1016/j.ijheatmasstransfer.2007.06.033
15.
Ilis
,
G. G.
,
Mobedi
,
M.
, and
Sunden
,
B.
,
2008
, “
Effect of Aspect Ratio on Entropy Generation in a Rectangular Cavity With Differentially Heated Vertical Walls
,”
Int. Commun. Heat Mass Transfer
,
35
(
6
), pp.
696
703
.10.1016/j.icheatmasstransfer.2008.02.002
16.
Deng
,
Q.-H.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Natural Convection in Square Cavities Due to Discrete Source–Sink Pairs
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5949
5957
.10.1016/j.ijheatmasstransfer.2008.04.062
17.
Lee
,
J.
,
Ha
,
M.
, and
Yoon
,
H.
,
2010
, “
Natural Convection in a Square Enclosure With a Circular Cylinder at Different Horizontal and Diagonal Locations
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5905
5919
.10.1016/j.ijheatmasstransfer.2010.07.043
18.
Persoons
,
T.
,
O'Gorman
,
I. M.
,
Donoghue
,
D. B.
,
Byrne
,
G.
, and
Murray
,
D. B.
,
2011
, “
Natural Convection Heat Transfer and Fluid Dynamics for a Pair of Vertically Aligned Isothermal Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5163
5172
.10.1016/j.ijheatmasstransfer.2011.08.033
19.
Kuznetsov
,
G. V.
, and
Sheremet
,
M. A.
,
2011
, “
Conjugate Natural Convection in an Enclosure With a Heat Source of Constant Heat Transfer Rate
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
260
268
.10.1016/j.ijheatmasstransfer.2010.09.046
20.
Fiscaletti
,
D.
,
Angeli
,
D.
,
Tarozzi
,
L.
, and
Barozzi
,
G.
,
2013
, “
Buoyancy-Induced Transitional Flows Around an Enclosed Horizontal Cylinder: An Experiment
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
619
631
.10.1016/j.ijheatmasstransfer.2012.11.039
21.
Kang
,
D. H.
,
Ha
,
M. Y.
,
Yoon
,
H. S.
, and
Choi
,
C.
,
2013
, “
Bifurcation to Unsteady Natural Convection in Square Enclosure With a Circular Cylinder at Rayleigh Number of 107
,”
Int. J. Heat Mass Transfer
,
64
, pp.
926
944
.10.1016/j.ijheatmasstransfer.2013.05.002
22.
Park
,
Y.
,
Ha
,
M.
, and
Yoon
,
H.
,
2013
, “
Study on Natural Convection in a Cold Square Enclosure With a Pair of Hot Horizontal Cylinders Positioned at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
65
, pp.
696
712
.10.1016/j.ijheatmasstransfer.2013.06.059
23.
Liao
,
C.-C.
, and
Lin
,
C.-A.
,
2014
, “
Transitions of Natural Convection Flows in a Square Enclosure With a Heated Circular Cylinder
,”
Appl. Therm. Eng.
,
72
(
1
), pp.
41
47
.10.1016/j.applthermaleng.2014.02.071
24.
Wang
,
Q.
,
Lei
,
H.
,
Wang
,
S.
, and
Dai
,
C.
,
2014
, “
Natural Convection Around a Pair of Hot and Cold Horizontal Microtubes at Low Rayleigh Numbers
,”
Appl. Therm. Eng.
,
72
(
1
), pp.
114
119
.10.1016/j.applthermaleng.2014.01.013
25.
Choi
,
C.
,
Jeong
,
S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2014
, “
Effect of a Circular Cylinder's Location on Natural Convection in a Rhombus Enclosure
,”
Int. J. Heat Mass Transfer
,
77
, pp.
60
73
.10.1016/j.ijheatmasstransfer.2014.04.071
26.
Choi
,
C.
,
Cho
,
H. W.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2015
, “
Effect of Circular Cylinder Location on Three-Dimensional Natural Convection in a Cubical Enclosure
,”
J. Mech. Sci. Technol.
,
29
(
3
), pp.
1307
1318
.10.1007/s12206-015-0246-3
27.
Pelletier
,
Q.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2016
, “
Unsteady Natural Convection Heat Transfer From a Pair of Vertically Aligned Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
95
, pp.
693
708
.10.1016/j.ijheatmasstransfer.2015.12.041
28.
Doo
,
J. H.
,
Mun
,
G. S.
,
Ha
,
M. Y.
, and
Seong
,
S. Y.
,
2016
, “
Thermo-Dynamic Irreversibility Induced by Natural Convection in Square Enclosure With Inner Cylinder—Part-II: Effect of Vertical Position of Inner Cylinder
,”
Int. J. Heat Mass Transfer
,
97
, pp.
1120
1139
.10.1016/j.ijheatmasstransfer.2016.02.054
29.
Mun
,
G. S.
,
Park
,
Y. G.
,
Yoon
,
H. S.
,
Kim
,
M.
, and
Ha
,
M. Y.
,
2017
, “
Natural Convection in a Cold Enclosure With Four Hot Inner Cylinders Based on Diamond Arrays (Part-I: Effect of Horizontal and Vertical Equal Distance of Inner Cylinders)
,”
Int. J. Heat Mass Transfer
,
111
, pp.
755
770
.10.1016/j.ijheatmasstransfer.2017.04.004
30.
Mun
,
G. S.
, Seo, Y. M.,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2018
, “
Natural Convection in a Cold Enclosure With Four Hot Inner Cylinders in a Diamond Array (Part-II: Effect of Unequal Horizontal and Vertical Distances of Inner Cylinders)
,”
Int. J. Heat Mass Transfer.
,
120
, pp.
1365
1373
.10.1016/j.ijheatmasstransfer.2017.05.086
31.
Seo
,
Y. M.
,
Park
,
Y. G.
,
Kim
,
M.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2017
, “
Two-Dimensional Flow Instability Induced by Natural Convection in a Square Enclosure With Four Inner Cylinders—Part I: Effect of Horizontal Position of Inner Cylinders
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1306
1318
.10.1016/j.ijheatmasstransfer.2017.02.011
32.
Seo
,
Y. M.
,
Mun
,
G. S.
,
Park
,
Y. G.
, and
Ha
,
M. Y.
,
2017
, “
Two-Dimensional Flow Instability Induced by Natural Convection in a Square Enclosure With Four Inner Cylinders—Part II: Effect of Various Positions of Inner Cylinders
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1319
1331
.10.1016/j.ijheatmasstransfer.2017.06.101
33.
Sheremet
,
M.
,
Pop
,
I.
,
Öztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2017
, “
Natural Convection of Nanofluid Inside a Wavy Cavity With a Non-Uniform Heating: Entropy Generation Analysis
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
4
), pp.
958
980
.10.1108/HFF-02-2016-0063
34.
Alsabery
,
A.
,
Sheremet
,
M.
,
Chamkha
,
A.
, and
Hashim
,
I.
,
2019
, “
Impact of Nonhomogeneous Nanofluid Model on Transient Mixed Convection in a Double Lid-Driven Wavy Cavity Involving Solid Circular Cylinder
,”
Int. J. Mech. Sci.
,
150
, pp.
637
655
.10.1016/j.ijmecsci.2018.10.069
35.
Yang
,
S.
,
Pilet
,
T.
, and
Ordonez
,
J.
,
2018
, “
Volume Element Model for 3D Dynamic Building Thermal Modeling and Simulation
,”
Energy
,
148
, pp.
642
661
.10.1016/j.energy.2018.01.156
36.
Kays
,
W.
, and
London
,
A.
,
1984
,
Compact Heat Exchangers
,
3rd
ed.,
MacGraw-Hill Book Company
,
New York
.
37.
Buchberg
,
H.
,
Catton
,
I.
, and
Edwards
,
D.
,
1976
, “
Natural Convection in Enclosed Spaces-a Review of Application to Solar Energy Collection
,”
ASME J. Heat Transfer
,
98
(
2
), pp.
182
188
.10.1115/1.3450516
38.
Yang
,
S.
,
Ordonez
,
J.
,
Vargas
,
J.
,
Chalfant
,
J.
, and
Chryssostomidis
,
C.
,
2016
, “
Mathematical Formulation and Demonstration of a Dynamic System-Level Ship Thermal Management Tool
,”
Adv. Eng. Software
,
100
, pp.
1
18
.10.1016/j.advengsoft.2016.06.007
39.
Cooke
,
C.
,
Chryssostomidis
,
C.
, and
Chalfant
,
J.
,
2017
, “
Modular Integrated Power Corridor
,”
Electric Ship Technologies Symposium
(
ESTS
), Arlington, VA, Aug. 14–17, pp.
91
95
.10.1109/ESTS.2017.8069265
40.
Yang
,
S.
,
Chagas
,
M.
, and
Ordonez
,
J.
,
2018
, “
Modeling, Cross-Validation, and Optimization of a Shipboard Integrated Energy System Cooling Network
,”
Appl. Therm. Eng.
,
145
, pp.
516
527
.10.1016/j.applthermaleng.2018.09.070
41.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
, Chichester, UK.
42.
COMSOL AB
,
2018
,
COMSOL Multiphysics v. 5.3a
, COMSOL AB,
Stockholm
,
Sweden
.
43.
Gear
,
C. W.
,
1967
, “
The Numerical Integration of Ordinary Differential Equations
,”
Math. Comput.
,
21
(
98
), pp.
146
156
.10.1090/S0025-5718-1967-0225494-5
44.
Deuflhard
,
P.
,
1974
, “
A Modified Newton Method for the Solution of Ill-Conditioned Systems of Nonlinear Equations With Application to Multiple Shooting
,”
Numerische Mathematik
,
22
(
4
), pp.
289
315
.10.1007/BF01406969
45.
Schenk
,
O.
, and
Gärtner
,
K.
,
2004
, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
Future Gener. Comput. Syst.
,
20
(
3
), pp.
475
487
.10.1016/j.future.2003.07.011
46.
Schlüter
,
M.
, and
Gerdts
,
M.
,
2010
, “
The Oracle Penalty Method
,”
J. Global Optim.
,
47
(
2
), pp.
293
325
.10.1007/s10898-009-9477-0
47.
Schlüter
,
M.
,
Gerdts
,
M.
, and
Rückmann
,
J.-J.
,
2012
, “
A Numerical Study of MIDACO on 100 MINLP Benchmarks
,”
Optimization
,
61
(
7
), pp.
873
900
.10.1080/02331934.2012.668545
48.
MATLAB,
2018
,
MATLAB, The MathWorks
, Natick, MA.
49.
Mun
,
G. S.
,
Doo
,
J. H.
, and
Ha
,
M. Y.
,
2016
, “
Thermo-Dynamic Irreversibility Induced by Natural Convection in Square Enclosure With Inner Cylinder—Part-I: Effect of Tilted Angle of Enclosure
,”
Int. J. Heat Mass Transfer
,
97
, pp.
1102
1119
.10.1016/j.ijheatmasstransfer.2016.02.055
You do not currently have access to this content.