Abstract

Solidification dynamics are crucial for determining microstructure development in additively manufactured parts. Multiphysics models based on finite element or finite volume methods may help gain insight for complicated phenomena such as fluid flow, keyholing, and porosity but are too computationally expensive to use for simulating actual builds. Recent analytic and semi-analytic solutions for moving heat sources in a semi-infinite three-dimensional space provide a way to accurately estimate the solidification conditions for entire builds. The downside to these methods is that, unlike finite element or finite volume methods, they cannot use the temperature distribution of the previous timesteps to march the solution forward in time. This paper provides the mathematical formulation and implementation of a forward time stepping (FTS) approach to an existing semi-analytic solution. The speed and accuracy of the two methods are then compared for various scan patterns. The result is that, for spot melts, the forward time-stepping model provides improvements in both speed and accuracy. This is especially true for longer simulations, where the simulation can be orders of magnitude faster. The longest simulation analyzed in this paper was roughly 30× faster when using the forward time-stepping model versus the straightforward implementation of the semi-analytic solution.

References

1.
Cotteleer, M.,
and Joyce
,
J.
,
2014
, “
3D Opportunity: Additive Manufacturing Paths to Performance, Innovation, and Growth
,”
Deloitte Review
, Vol. 14.https://www2.deloitte.com/us/en/insights/deloitte-review/issue-14/dr14-3d-opportunity.html
2.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.10.1016/j.pmatsci.2017.10.001
3.
Sames
,
W. J.
, List, F. A., Pannala, S., Dehoff, R. R., and Babu, S. S.,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
,
61
(
5
), pp.
1
46
.10.1080/09506608.2015.1116649
4.
Kurz
,
W.
,
Giovanola
,
B.
, and
Trivedi
,
R.
,
1986
, “
Theory of Microstructural Development During Rapid Solidification
,”
Acta Metall.
,
34
(
5
), pp.
823
830
.10.1016/0001-6160(86)90056-8
5.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.10.1007/BF02667333
6.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
, pp.
51
60
.10.1016/j.finel.2014.04.003
7.
Raghavan
,
A.
, Wei, H. L., Palmer, T. A., and DebRoy, T.,
2013
, “
Heat Transfer and Fluid Flow in Additive Manufacturing
,”
J. Laser Appl.
,
25
(
5
), p.
052006
.10.2351/1.4817788
8.
Taylor
,
G. A.
,
Hughes
,
M.
,
Strusevich
,
N.
, and
Pericleous
,
K.
,
2002
, “
Finite Volume Methods Applied to the Computational Modelling of Welding Phenomena
,”
Appl. Math. Modell.
,
26
(
2
), pp.
309
320
.10.1016/S0307-904X(01)00063-4
9.
Klassen
,
A.
,
Scharowsky
,
T.
, and
Körner
,
C.
,
2014
, “
Evaporation Model for Beam Based Additive Manufacturing Using Free Surface Lattice Boltzmann Methods
,”
J. Phys. D: Appl. Phys.
,
47
(
27
), p.
275303
.10.1088/0022-3727/47/27/275303
10.
Rai
,
A.
,
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
A Coupled Cellular Automaton–Lattice Boltzmann Model for Grain Structure Simulation During Additive Manufacturing
,”
Comput. Mater. Sci.
,
124
, pp.
37
48
.10.1016/j.commatsci.2016.07.005
11.
Nguyen
,
N. T.
,
Ohta
,
A.
,
Matsuoka
,
K.
,
Suzuki
,
N.
, and
Maeda
,
Y.
,
1999
, “
Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources
,”
Weld. Res. Suppl.
,
I
, pp.
265
274
.http://files.aws.org/wj/supplement/aug99/NGUYEN.pdf
12.
Forslund
,
R.
,
Snis
,
A.
, and
Larsson
,
S.
,
2019
, “
Analytical Solution for Heat Conduction Due to a Moving Gaussian Heat Flux With Piecewise Constant Parameters
,”
Appl. Math. Modell.
, 66, pp.
227
240
.10.1016/j.apm.2018.09.018
13.
Mejia-Parra
,
D.
,
Montoya-Zapata
,
D.
,
Arbelaiz
,
A.
,
Moreno
,
A.
,
Posada
,
J.
, and
Ruiz-Salguero
,
O.
,
2018
, “
Fast Analytic Simulation for Multi-Laser Heating of Sheet Metal in GPU
,”
Materials (Basel)
,
11
(
11
), p.
2078
.10.3390/ma11112078
14.
Plotkowski
,
A.
,
Kirka
,
M. M.
, and
Babu
,
S. S.
,
2017
, “
Verification and Validation of a Rapid Heat Transfer Calculation Methodology for Transient Melt Pool Solidification Conditions in Powder Bed Metal Additive Manufacturing
,”
Addit. Manuf.
,
18
, pp.
256
268
.10.1016/j.addma.2017.10.017
15.
Eagar
,
T. W.
, and
Tsai
,
N.-S.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. Res. Suppl.
, 62(12), pp.
346
355.
https://www.osti.gov/biblio/5782268-temperature-fields-produced-traveling-distributed-heat-sources
16.
Raghavan
,
N.
,
Dehoff
,
R.
,
Pannala
,
S.
,
Simunovic
,
S.
,
Kirka
,
M.
,
Turner
,
J.
,
Carlson
,
N.
, and
Babu
,
S. S.
,
2016
, “
Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing
,”
Acta Mater.
,
112
, pp.
303
314
.10.1016/j.actamat.2016.03.063
17.
Dehoff
,
R. R.
,
Kirka
,
M. M.
,
Sames
,
W. J.
,
Bilheux
,
H.
,
Tremsin
,
A. S.
,
Lowe
,
L. E.
, and
Babu
,
S. S.
,
2015
, “
Site Specific Control of Crystallographic Grain Orientation Through Electron Beam Additive Manufacturing
,”
Mater. Sci. Technol.
, 31(
8
), pp.
931
938
.10.1179/1743284714Y.0000000734
18.
Kirka
,
M. M.
,
Lee
,
Y.
,
Greeley
,
D. A.
,
Okello
,
A.
,
Goin
,
M. J.
,
Pearce
,
M. T.
, and
Dehoff
,
R. R.
,
2017
, “
Strategy for Texture Management in Metals Additive Manufacturing
,”
JOM
,
69
(
3
), pp.
523
531
.10.1007/s11837-017-2264-3
You do not currently have access to this content.