Abstract

In this work, fluid flow and heat transfer characteristics of three-dimensional (3D) wall jets exiting from a circular and square opening are presented based on experimental investigations. Two hydraulic diameters, namely, 2.5 and 7.5 mm and a Reynolds number range of 5000–20,000 have been considered. Mean velocity and turbulence intensity distribution in the walljet are quantified using a hot wire anemometry. Measurements are done both along the streamwise and spanwise directions. Transient infrared thermography is used for mapping the temperatures over the surface, and the heat transfer coefficients are estimated using a semi-infinite approximation methodology. Results show that, for circular jets, the effect of the jet diameter on the local and the spanwise-averaged Nusselt number is most pronounced near the jet exit. Further, it is also observed that circular jets have an edge over square jets. A correlation with a high correlation coefficient of 0.95 has been developed for spanwise average Nusselt number as a function of the Reynolds number and the dimensionless streamwise distance.

References

References
1.
Tetervin
,
N.
,
1948
, “
Laminar Flow of a Slightly Viscous Incompressible Fluid That Issues From a Slit and Passes Over a Flat Plate
,” Langley Aeronautical Lab, Langley Field, VA, Report No. NACA-TN-1644.
2.
Glauert
,
M.
,
1956
, “
The Wall Jet
,”
J. Fluid Mech.
,
1
(
6
), pp.
625
643
.10.1017/S002211205600041X
3.
Seban
,
R.
,
1960
, “
Heat Transfer and Effectiveness for a Turbulent Boundary Layer With Tangential Fluid Injection
,”
ASME J. Heat Transfer
,
82
(
4
), pp.
303
312
.10.1115/1.3679938
4.
Seban
,
R.
, and
Back
,
L.
,
1961
, “
Velocity and Temperature Profiles in a Wall Jet
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
255
265
.10.1016/0017-9310(61)90041-2
5.
Narasimha
,
R.
,
Narayan
,
K. Y.
, and
Parthasarathy
,
S.
,
1973
, “
Parametric Analysis of Turbulent Wall Jets in Still Air
,”
Aeronaut. J.
,
77
(
751
), pp.
355
359
.10.1017/S0001924000041324
6.
Bajura
,
R.
, and
Catalano
,
M.
,
1975
, “
Transition in a Two-Dimensional Plane Wall Jet
,”
J. Fluid Mech.
,
70
(
4
), pp.
773
799
.10.1017/S0022112075002340
7.
Launder
,
B.
, and
Rodi
,
W.
,
1979
, “
The Turbulent Wall Jet
,”
Prog. Aerosp. Sci.
,
19
, pp.
81
128
.10.1016/0376-0421(79)90002-2
8.
Launder
,
B.
, and
Rodi
,
W.
,
1983
, “
The Turbulent Wall Jet Measurements and Modeling
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
429
459
.10.1146/annurev.fl.15.010183.002241
9.
Herbst
,
G.
, and
Sforza
,
P.
,
1970
, “
A Study of Three-Dimensional, Incompressible, Turbulent Wall Jets
,”
AIAA J.
,
8
(
2
), pp.
276
283
.10.2514/3.5656
10.
Padmanabham
,
G.
, and
Gowda
,
B. L.
,
1991
, “
Mean and Turbulence Characteristics of a Class of Three-Dimensional Wall Jets—Part 1: Mean Flow Characteristics
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
620
628
.10.1115/1.2926525
11.
Padmanabham
,
G.
, and
Gowda
,
B. L.
,
1991
, “
Mean and Turbulence Characteristics of a Class of Three-Dimensional Wall Jets—Part 2: Turbulence Characteristics
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
629
634
.10.1115/1.2926526
12.
Law
,
A. W.-K.
, and
Herlina
,
2002
, “
An Experimental Study on Turbulent Circular Wall Jets
,”
J. Hydraul. Eng.
,
128
(
2
), pp.
161
174
.10.1061/(ASCE)0733-9429(2002)128:2(161)
13.
Sun
,
H.
, and
Ewing
,
D.
,
2001
, “
The Development of Three-Dimensional Wall Jet
,”
48th Annual CASI Conference
, Toronto, ON, Canada, Apr. 29–May 2.
14.
Sun
,
H.
, and
Ewing
,
D.
,
2002
, “
Effect of Initial and Boundary Conditions on Development of Three-Dimensional Wall Jets
,”
AIAA
Paper No. 2002-733.10.2514/6.2002-733
15.
Akfirat
,
J. C.
,
1966
, “
Transfer of Heat From an Isothermal Flat Plate to a Two-Dimensional Wall Jet
,”
International Heat Transfer Conference
, Chicago, IL, Aug. 7−12, pp.
274
279
.
16.
AbdulNour
,
R.
,
Willenborg
,
K.
,
McGrath
,
J.
,
Foss
,
J.
, and
AbdulNour
,
B.
,
2000
, “
Measurements of the Convection Heat Transfer Coefficient for a Planar Wall Jet: Uniform Temperature and Uniform Heat Flux Boundary Conditions
,”
Exp. Therm. Fluid Sci.
,
22
(
3–4
), pp.
123
131
.10.1016/S0894-1777(00)00018-2
17.
Naqavi
,
I. Z.
,
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2017
, “
A Numerical Study of a Plane Wall Jet With Heat Transfer
,”
Int. J. Heat Fluid Flow
,
63
, pp.
99
107
.10.1016/j.ijheatfluidflow.2016.07.012
18.
Mondal
,
T.
,
Guha
,
A.
, and
Das
,
M. K.
,
2016
, “
Effect of Bottom Wall Proximity on the Unsteady Flow Structures of a Combined Turbulent Wall Jet and Offset Jet Flow
,”
Eur. J. Mech.-B/Fluids
,
57
, pp.
101
114
.10.1016/j.euromechflu.2015.12.003
19.
Godi
,
S. C.
,
Pattamatta
,
A.
, and
Balaji
,
C.
,
2016
, “
Transient Heat Transfer Measurements for Planar and Circular Wall Jet Using Liquid Crystal Thermography
,”
ASME
Paper No. IMECE2016-66572.10.1115/IMECE2016-66572
20.
Godi
,
S. C.
,
Abraham
,
S.
,
Pattamatta
,
A.
, and
Balaji
,
C.
,
2019
, “
Evaluation of Candidate Strategies for the Estimation of Local Heat Transfer Coefficient From Wall Jets
,”
Exp. Heat Transfer
, Feb.12, pp.
1
24
.10.1080/08916152.2019.1570983
21.
Esposito
,
E.
,
Ekkad
,
S.
,
Kim
,
Y.
, and
Dutta
,
P.
,
2009
, “
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
021001
.10.1115/1.3202799
22.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.10.1115/1.1791283
23.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
24.
Hall
,
J. W.
, and
Ewing
,
D.
,
2007
, “
Three-Dimensional Turbulent Wall Jets Issuing From Moderate-Aspect-Ratio Rectangular Channels
,”
AIAA J.
,
45
(
6
), p.
1177
.10.2514/1.20386
You do not currently have access to this content.