Abstract

Matrix method of solution is applied to determine generalized thermoelastic wave propagation in an unbounded medium due to periodically varying heat source under the influence of magnetic field. Green–Lindsay (GL) model of generalized thermoelasticity for finite wave propagation is considered along with a magnetic field for a rotating medium with uniform velocity. Basic equations are solved by eigenvalue approach method after compiling in a form of vector–matrix linear differential equation in Laplace transform domain. Finally inverting the perturbed magnetic field and other field variables by a suitable numerical method, the results are analyzed by depicting several graphs in space–time domain.

References

References
1.
Ackerman
,
C. C.
,
Bertman
,
B.
,
Fairbank
,
H. A.
, and
Guyer
,
R. A.
,
1966
, “
Second Sound in Solid Helium
,”
Phys. Rev. Lett.
,
16
(
18
), pp.
789
791
.10.1103/PhysRevLett.16.789
2.
Ackerman
,
C. C.
, and
Guyer
,
R. A.
,
1968
, “
Temperature Pulses in Dielectric Solids
,”
Ann. Phys.
,
50
(
1
), pp.
128
185
.10.1016/0003-4916(68)90320-5
3.
Rogers
,
S. J.
,
1971
, “
Transport of Heat and Approach to Second Sound in Some Isotropically Pure Alkali-Halide Crystals
,”
Phys. Rev. B
,
3
(
4
), pp.
1440
1457
.10.1103/PhysRevB.3.1440
4.
Jackson
,
M. E.
, and
Walker
,
C. T.
,
1971
, “
Thermal Conductivity, Second Sound and Phonon-Phonon Interactions in NaF
,”
Phys. Rev. B
,
3
(
4
), pp.
1428
1439
.10.1103/PhysRevB.3.1428
5.
Lord
,
H.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.10.1016/0022-5096(67)90024-5
6.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elasticity
,
2
(
1
), pp.
1
7
.10.1007/BF00045689
7.
Green
,
A. E.
, and
Laws
,
N.
,
1972
, “
On the Entropy Production Inequality
,”
Arch. Ration. Mech. Anal.
,
45
(
1
), pp.
47
53
.10.1007/BF00253395
8.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1991
, “
A Re-Examination of the Basic Results of Thermodynamics
,”
Proc. R. Soc. London, Ser. A
,
432
(
1885
), pp.
171
194
.10.1098/rspa.1991.0012
9.
Bayones
,
F. S.
, and
Abd-Alla
,
A. M.
,
2017
, “
Eigenvalue Approach to Two Dimensional Coupled Magneto-Thermoelasticity in a Rotating Isotropic Medium
,”
Results Phys.
,
7
, pp.
2941
2949
.10.1016/j.rinp.2017.07.053
10.
Abo-Dahab
,
S. M.
, and
Biswas
,
S.
,
2017
, “
Effect of Rotation on Rayleigh Waves in Magneto-Thermoelastic Transversely Isotropic Medium With Thermal Relaxation
,”
J. Electromagn. Waves Appl.
,
31
(
15
), pp.
1485
1507
.10.1080/09205071.2017.1351403
11.
Othman
,
M. I. A.
, and
Said
,
S. M.
,
2015
, “
The Effect of Rotation on a Fibre-Reinforced Medium Under Generalized Magneto-Thermoelasticity With Internal Heat Sources
,”
Mech. Adv. Mater. Struct.
,
22
(
3
), pp.
168
183
.10.1080/15376494.2012.725508
12.
Abo-Dahab
,
S. M.
,
Abd-Alla
,
A. M.
, and
Mahmoud
,
A. E.
,
2017
, “
Thermal Stresses in Thermoelastic Half Space Without Energy Dissipation Subjected to Rotation and Magnetic Field
,”
Appl. Math. Inf. Sci.
,
11
(
6
), pp.
1637
1647
.10.18576/amis/110611
13.
Mashat
,
D. S.
,
Zenkour
,
A. M.
, and
Abouelregal
,
A. E.
,
2017
, “
Thermoelastic Interactions in a Rotating Infinite Orthotropic Elastic Body With a Cylindrical Hole and Variable Thermal Conductivity
,”
Arch. Mech. Eng.
,
64
(
4
), pp.
481
498
.10.1515/meceng-2017-0028
14.
Zenkour
,
A. M.
,
2017
, “
Vibration Analysis of Generalized Thermoelastic Microbeams Resting on Viscopasternak Foundations
,”
Adv. Aircr. Spacecr. Sci.
,
4
(
3
), pp.
269
280
.10.12989/aas.2017.4.3.269
15.
Ezzat
,
M. A.
, and
El-Bary
,
A. A.
,
2016
, “
Effect of Variable Thermal Conductivity and Fractional Order of Heat Transfer on a Perfect Conducting Infinitely Long Hollow Cylinder
,”
Int. J. Therm. Sci.
,
108
, pp.
62
69
.10.1016/j.ijthermalsci.2016.04.020
16.
Xiong
,
C.
, and
Guo
,
Y.
,
2016
, “
Effect of Variable Properties and Moving Heat Sources on Magnetothermoelastic Problem Under Fractional Order Thermoelasticity
,”
Adv. Mater. Sci. Eng.
,
2016
, p.
5341569
.10.1155/2016/5341569
17.
Abo-Dahab
,
S. M.
, and
Salama Moustafa
,
M.
,
2014
, “
A Plane Magnetothermoelastic Waves Reflection and Refraction Between Two Solid Media With External Heat Sources and Initial Stress
,”
J. Therm. Stresses
,
37
(
9
), pp.
1124
1151
.10.1080/01495739.2014.913405
18.
Abo-Dahab
,
S. M.
,
2015
, “
On Magnetic Field and Two Thermal Relaxation Times for p-Waves Propagation at Interface Between Two Solid Liquid Media Under Initial Stress and Heat Sources
,”
J. Comput. Theor. Nanosci.
,
12
(
3
), pp.
361
370
.10.1166/jctn.2015.3737
19.
Abo-Dahab
,
S. M.
,
Allam Mohamed
,
N. M.
, and
Abdel-Aty
,
M.
,
2019
, “
Reflection and Refraction of Incident p-, T-, and SV-Waves at Interface Between Magnetized Two Solid-Liquid Media With Heat Sources and Initial Stress With and Without Thermal Relaxation Times
,”
J. Therm. Stresses
,
42
(
2
), pp.
233
253
.10.1080/01495739.2018.1443299
20.
Schoenberg
,
M.
, and
Censor
,
D.
,
1973
, “
Elastic Waves in Rotating Medium
,”
Q. J. Mech. Appl. Math.
,
31
, pp.
115
125
.10.1090/qam/99708
21.
Othman
,
M. I. A.
, and
Song
,
Y.
,
2011
, “
Reflection of Magneto-Thermoelastic Waves From a Rotating Elastic Half Space in Generalized Thermoelasticity Under Three Theories
,”
Mech. Mech. Eng.
,
15
(
1
), pp.
5
24
.
22.
Das
,
N. C.
,
Das
,
S. N.
, and
Das
,
B.
,
1983
, “
Eigenvalue Approach to Thermoelasticity
,”
J. Therm. Stresses
,
6
(
1
), pp.
35
43
.10.1080/01495738308942164
23.
Baksi
,
A.
,
Bera
,
R. K.
, and
Debnath
,
L.
,
2004
, “
Eigenvalue Approach to Study the Effect of Rotation and Relaxation Time in Two Dimensional Problem of Generalized Thermoelasticity
,”
Int. J. Eng. Sci.
,
42
(
15–16
), pp.
1573
1585
.10.1016/j.ijengsci.2004.03.003
24.
Sinha
,
M.
, and
Bera
,
R. K.
,
2003
, “
Eigenvalue Approach to Study the Effect of Rotation and Relaxation Time in Generalized Thermoelasticity
,”
Comp. Math. Appl.
,
46
(
5–6
), pp.
783
792
.10.1016/S0898-1221(03)90141-6
25.
Roychoudhuri
,
S. K.
, and
Banerjee
,
M.
,
2004
, “
Magnetoelastic Plane Waves in Rotating Media in Thermoelasticity of Type II (GN-Model)
,”
Int. J. Math. Sci.
,
71
, pp.
3917
3929
.10.1155/S0161171204404566
26.
Das
,
P.
, and
Kanoria
,
M.
,
2014
, “
Study of Finite Thermal Waves in a Magneto-Thermoelastic Rotating Medium
,”
J. Therm. Stresses
,
37
(
4
), pp.
405
428
.10.1080/01495739.2013.870847
27.
Lahiri
,
A.
,
Das
,
N. C.
,
Sarkar
,
S.
, and
Das
,
M.
,
2009
, “
Matrix Method of Solution of Coupled Differential Equations and Its Applications in Generalized Thermoelasticity
,”
Bull. Cal. Math. Soc.
,
101
(
6
), pp.
571
590
.
28.
Zakian
,
V.
,
1969
, “
Numerical Inversion of Laplace Transforms
,”
Electron. Lett.
,
5
(
6
), pp.
120
121
.10.1049/el:19690090
29.
Pal
,
P.
,
Das
,
P.
, and
Kanoria
,
M.
,
2015
, “
Magneto-Thermoelastic Response in a Functionally Graded Rotating Medium Due to a Periodically Varying Heat Source
,”
Acta Mech.
,
226
(
7
), pp.
2103
2120
.10.1007/s00707-015-1301-y
30.
Ezzat
,
M. A.
, and
Youssef
,
H. M.
,
2005
, “
Generalized Magneto-Thermoelasticity in a Perfectly Conducting Medium
,”
Int. J. Solids Struct.
,
42
(
24–25
), pp.
6319
6334
.10.1016/j.ijsolstr.2005.03.065
31.
Sarkar
,
N.
,
2014
, “
Generalized Magneto-Thermoelasticity With Modified Ohms Law Under Three Theories
,”
Comput. Math. Model.
,
25
(
4
), pp.
544
564
.10.1007/s10598-014-9248-8
32.
Gangopadhyaya
,
N.
,
Roy
,
S.
,
Sahoo
,
M.
, and
Roychowdhury
,
S.
,
2018
, “
Eigenvalue Approach on Generalized Thermoelastic Interactions of a Layer
,”
Int. J. Math. Trends Tech.
,
54
(
3
), pp.
240
252
.10.14445/22315373/IJMTT-V54P527
You do not currently have access to this content.