Abstract

Number of entropy generation is a significant performance evaluation factor for heat exchanger as it results in trade-off between heat transfer and pressure drop. Optimization of the three-fluid heat exchanger (3FHX) for minimum number of entropy generation unit requires εNTU relation which is unavailable for three-fluid cross-flow heat exchanger due to various complexities involved. A new approximate methodology for the optimization is presented by proving the equivalence of 3FHX with a coupled two-fluid heat exchanger (2FHX) followed by using εNTU relationship for 2FHX. The experimental and numerical validation of the equivalence model is presented. Three-fluid cross-flow compact heat exchanger with offset strip fins is optimized for minimum number of entropy generation units using genetic algorithm (GA). Optimum design variables including heat distribution factor are determined for different cross-flow arrangements of 3FHX with heat duty and pressure drop as constraint for both even and uneven fin dimensions case in all the passages. The present complex model including large number of continuous design variables can be handled well by GA. Validation of the results is carried out by using graphical techniques and very good agreement is observed. Additionally, sensitivity of the heat exchanger dimension has also been checked on the number of entropy generation along with the pressure drop in all the three fluids.

References

1.
Morley
,
T. B.
,
1933
, “
Exchange ofAQ8 Heat Between Three Fluids
,”
Engineer
,
155
, p.
134
.
2.
Noel
,
C. W.
, Jr.
,
1968
, “
Analysis of Three-Fluid, Crossflow Heat Exchangers
,”
ASME J. Heat Transfer
,
90
(
3
), pp.
333
338
.10.1115/1.3597512
3.
Ba
c ˘
lić
,
B. S.
,
Sekulić
,
D. P.
, and
Gvozdenac
,
D. D.
,
1982
, “
Performances of Three-Fluid Single Pass Crossflow Heat Exchanger
,”
Heat Transfer
,
6
, pp.
167
172
.
4.
Kou
,
H.
, and
Yuan
,
P.
,
2000
, “
Thermal Analysis of Plate-Fin Crossflow Heat Exchanger Including Three Fluid Streams With Different Arrangements
,”
Int. J. Transp. Phenom.
,
3
, pp.
29
41
.
5.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2008
, “
Dynamic Behavior of Three-Fluid Crossflow Heat Exchangers
,”
ASME J. Heat Transfer
,
130
(
1
), p.
011801
.10.1115/1.2401616
6.
Aasi
,
H. K.
, and
Mishra
,
M.
,
2018
, “
Transient Behaviour of Three-Fluid Cross-Flow Heat Exchanger Under the Influence of Temperature Non-Uniformity
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061012
.10.1115/1.4040987
7.
Aulds
,
D. D.
, and
Barron
,
R. F.
,
1967
, “
Three-Fluid Heat Exchanger Effectiveness
,”
Int. J. Heat Mass Transfer
,
10
(
10
), pp.
1457
1462
.10.1016/0017-9310(67)90032-4
8.
Sekulić
,
D. P.
, and
Kmećko
,
I.
,
1995
, “
Three-Fluid Heat Exchanger Effectiveness Revisited
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
226
229
.10.1115/1.2822309
9.
Shrivastava
,
D.
, and
Ameel
,
T. A.
,
2004
, “
Three-Fluid Heat Exchangers With Three Thermal Communications—Part B: Effectiveness Evaluation
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3867
3875
.10.1016/j.ijheatmasstransfer.2004.03.020
10.
Bejan
,
A.
,
1977
, “
The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Transfer
,
99
(
3
), pp.
374
380
.10.1115/1.3450705
11.
Bejan
,
A.
,
1982
,
Entropy Generation in Heat and Fluid Flow
,
Wiley and Sons
,
New York
.
12.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimisation,”
John-Wiley and Sons
,
New York
.
13.
Bejan
,
A.
,
1996
,
Entropy Generation Minimisation
,
CRC Press
,
New York
.
14.
Bejan
,
A.
,
1996
, “
Model of Entropy Generation Minimization or Modelling and Optimization Based on Combined Heat Transfer and Thermodynamics
,”
Rev. Gen. Therm.
,
35
, pp.
635
646
.
15.
Sekulic
,
D. P.
, and
Herman
,
C. V.
,
1986
, “
One Approach to Irreversibility Minimization in Compact Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
13
, pp.
23
32
.10.1016/0735-1933(86)90069-2
16.
Culham
,
J. R.
, and
Muzychka
,
S. Y.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.10.1109/6144.926378
17.
Zhang
,
L.
,
Yang
,
C.
, and
Zhou
,
J.
,
2010
, “
A Distributed Parameter Model and Its Application in Optimizing the Plate-Fin Heat Exchanger Based on the Minimum Entropy Generation
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1427
1436
.10.1016/j.ijthermalsci.2010.02.008
18.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2004
, “
Optimum Design of Crossflow Plate-Fin Heat Exchangers Through Genetic Algorithm
,”
Int. J. Heat Exch.
,
5
(
2
), pp.
1524
5608
.
19.
Mishra
,
M.
,
Das
,
P. K.
, and
Sarangi
,
S.
,
2009
, “
Second Law Based Optimization of Crossflow Plate-Fin Heat Exchanger Design Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
2983
2989
.10.1016/j.applthermaleng.2009.03.009
20.
Mishra
,
M.
, and
Das
,
P. K.
,
2009
, “
Thermoeconomic Design-Optimisation of Crossflow Plate-Fin Heat Exchanger Using Genetic Algorithm
,”
Int. J. Exergy
,
6
(
6
), pp.
837
852
.10.1504/IJEX.2009.028577
21.
Sanaye
,
S.
, and
Hajabdollahi
,
H.
,
2010
, “
Thermal-Economic Multi-Objective Optimization of Plate Fin Heat Exchanger Using Genetic Algorithm
,”
Appl. Energy
,
87
(
6
), pp.
1893
1902
.10.1016/j.apenergy.2009.11.016
22.
Ghosh
,
S.
,
Ghosh
,
I.
,
Pratihar
,
D. K.
,
Maiti
,
B.
, and
Das
,
P. K.
,
2011
, “
Optimum Stacking Pattern for Multi-Stream Plate-Fin Heat Exchanger Through a Genetic Algorithm
,”
Int. J. Therm. Sci.
,
50
(
2
), pp.
214
224
.10.1016/j.ijthermalsci.2010.07.003
23.
Fabbri
,
G.
,
1997
, “
A Genetic Algorithm for Fin Profile Optimization
,”
Int. J. Heat Mass Transfer
,
40
(
9
), pp.
2165
2172
.10.1016/S0017-9310(96)00294-3
24.
Özçelik
,
Y.
,
2007
, “
Exergetic Optimization of Shell and Tube Heat Exchangers Using a Genetic Based Algorithm
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1849
1856
.10.1016/j.applthermaleng.2007.01.007
25.
Guo
,
J.
,
Cheng
,
L.
, and
Xu
,
M.
,
2009
, “
Optimization Design of Shell-and-Tube Heat Exchanger by Entropy Generation Minimization and Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
2954
2960
.10.1016/j.applthermaleng.2009.03.011
26.
Khan
,
W. A.
,
Kadri
,
M. B.
, and
Ali
,
Q.
,
2013
, “
Optimization of Microchannel Heat Sinks Using Genetic Algorithm
,”
Heat Transfer Eng.
,
34
(
4
), pp.
279
287
.10.1080/01457632.2013.694758
27.
Jajja
,
S. A.
,
Ali
,
W.
,
Ali
,
H. M.
, and
Ali
,
A. M.
,
2014
, “
Water Cooled Minichannel Heat Sinks for Microprocessor Cooling: Effect of Fin Spacing
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
76
82
.10.1016/j.applthermaleng.2013.12.007
28.
Arshad
,
W.
, and
Ali
,
H. M.
,
2017
, “
Experimental Investigation of Heat Transfer and Pressure Drop in a Straight Minichannel Heat Sink Using TiO2 Nanofluid
,”
Int. J. Heat Mass Transfer
,
110
, pp.
248
256
.10.1016/j.ijheatmasstransfer.2017.03.032
29.
Ali
,
H. M.
, and
Arshad
,
W.
,
2017
, “
Effect of Channel Angle of Pin-Fin Heat Sink on Heat Transfer Performance Using Water Based Graphene Nanoplatelets Nanofluids
,”
Int. J. Heat Mass Transfer
,
106
, pp.
465
472
.10.1016/j.ijheatmasstransfer.2016.08.061
30.
Wolfersdorf
,
J. V.
,
Achermann
,
E.
, and
Weigand
,
B.
,
1997
, “
Shape Optimisation of Cooling Channels Using Genetic Algorithms
,”
ASME J. Heat Transfer
,
119
, pp.
380
388
.10.1115/1.2824239
31.
Deb
,
K.
,
1995
,
Optimization for Engineering Design: Algorithms and Examples
,
Prentize-Hall of India
,
New Delhi, India
.
32.
Goldberg
,
D. E.
,
2000
,
Genetics Algorithms in Search Optimisation and Machine Learning
,
Addison-Wesley Longman
,
Boston, MA
.
33.
Jamali
,
A.
,
Ahmadi
,
P.
,
Nazari
,
M.
, and
Jaafar
,
N. M.
,
2014
, “
Optimisation of the Nobel Carbon Dioxide Cogeneration System Using Artificial Neural Network and Muti-Objective Genetic Algorithm
,”
Appl. Therm. Energy
,
64
(
1–2
), pp.
293
306
.10.1016/j.applthermaleng.2013.11.071
34.
Shi
,
H.
,
Ma
,
T.
,
Chu
,
W.
, and
Wang
,
Q.
,
2017
, “
Optimization of Inlet Part of a Microchannel Ceramic Heat Exchanger Using Surrogate Model Coupled With Genetic Algorithm
,”
Energy Convers. Manage.
,
149
, pp.
988
996
.10.1016/j.enconman.2017.04.035
35.
Yin
,
Q.
,
Du
,
W.
, and
Cheng
,
L.
,
2017
, “
Optimization Design of Heat Recovery Systems on Rotatory Kilns Using Genetic Algorithms
,”
Appl. Energy
,
202
, pp.
153
168
.10.1016/j.apenergy.2017.05.072
36.
Bergman, T. L., Lavine, A. S., Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2011,
Fundamentals of Heat and Mass Transfer
, Wiley, Hoboken, NJ.
37.
Joshi
,
H. M.
, and
Webb
,
R. L.
,
1987
, “
Heat Transfer and Friction in the Offset Strip-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
69
84
.10.1016/0017-9310(87)90061-5
38.
Diani
,
A.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2012
, “
Experimental and Numerical Analysis of Different Extended Surfaces
,”
J. Phys.
,
395
(
1
), p.
012045
.10.1088/1742-6596/395/1/012045
You do not currently have access to this content.