Abstract

A generalized correlation for combined entry convection in ducts of arbitrary cross section has been developed. The correlation is constructed for the average Nusselt number using knowledge of fully developed transport constants. The general correlation reproduces the first principle solutions for the well-established round and parallel plate duct geometries to within ±5% for both constant temperature and constant heat flux wall conditions when Pr ≥ 0.7. A survey of the literature demonstrates that the new generalized correlation performs as well or better than existing correlations, which are expressed for specific geometries and wall conditions. The new correlation is generally in good agreement with the first principle solutions of less common duct geometries so long as the duct has a convective surface equal to the wetted perimeter. The new correlation is not recommended for ducts having small aspect ratios that pinch the flow when convection is prescribed by the H2 constant heat flux wall condition.

References

1.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
2.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.10.1115/1.1643752
3.
Lévêque
,
A.
,
1928
, “
Les Lois de la Transmission de Chaleur Par Convection
,”
Ann. Des Mines, Memoires
,
13
, pp.
201
299
,
305
362
,
381
415
.
4.
Martin
,
H.
,
1996
, “
A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers
,”
Chem. Eng. Process.: Process Intensif.
,
35
(
4
), pp.
301
310
.10.1016/0255-2701(95)04129-X
5.
Bennett
,
T. D.
,
2019
, “
Correlations for the Graetz Problem in Convection—Part 1: For Round Pipes and Parallel Plates
,”
Int. J. Heat Mass Transfer
,
136
, pp.
832
841
.10.1016/j.ijheatmasstransfer.2019.03.006
6.
Bennett
,
T. D.
,
2019
, “
Correlations for the Graetz Problem in Convection—Part 2: For Ducts of Arbitrary Cross-Section
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1327
1334
.10.1016/j.ijheatmasstransfer.2019.02.052
7.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
8.
Jensen
,
M. K.
,
1989
, “
Simultaneously Developing Laminar Flow in an Isothermal Circular Tube
,”
Int. Comm. Heat Mass Transfer
,
16
(
6
), pp.
811
820
.10.1016/0735-1933(89)90007-9
9.
Paz
,
S. P. A.
,
Macedo
,
E. N.
,
Quaresma
,
J. N.
, and
Cotta
,
R. M.
,
2007
, “
Eigenfunction Expansion Solution for Boundary-Layer Equations in Cylindrical Coordinates: Simultaneously Developing Flow in Circular Tubes
,”
Numer. Heat Transfer, Part A: Appl.
,
52
(
12
), pp.
1123
1149
.10.1080/10407780701364445
10.
Ulrichson
,
D. L.
, and
Schmitz
,
R. A.
,
1965
, “
Laminar-Flow Heat Transfer in the Entrance Region of Circular Tubes
,”
Int. J. Heat Mass Transfer
,
8
(
2
), pp.
253
258
.10.1016/0017-9310(65)90112-2
11.
Hornbeck
,
R. W.
,
1965
, “
An All-Numerical Method for Heat Transfer in the Inlet of a Tube
,”
ASME
Paper No. 65-WA/RT-36.10.1115/65-WA/RT-36
12.
Shome
,
B.
, and
Jensen
,
M. K.
,
1993
, “
Correlations for Simultaneously Developing Laminar Flow and Heat Transfer in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
36
(
10
), pp.
2710
2713
.10.1016/S0017-9310(05)80209-1
13.
Campos Silva
,
J. B.
,
Cotta
,
R. M.
, and
Aparecido
,
J. B.
,
1992
, “
Analytical Solutions to Simultaneously Developing Laminar Flow Inside Parallel-Plate Channels
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
887
895
.10.1016/0017-9310(92)90255-Q
14.
Hwang
,
C. L.
, and
Fan
,
L. T.
,
1964
, “
Finite Difference Analysis of Forced-Convection Heat Transfer in Entrance Region of a Flat Rectangular Duct
,”
Appl. Sci. Res., Sect. A
,
13
(
1
), pp.
401
422
.10.1007/BF00382066
15.
Bennett
,
T. D.
,
2019
, “
A Historical Misperception on Calculating the Average Convection Coefficient in Tubes With Constant Wall Heat Flux
,”
ASME J. Heat Transfer
,
141
(
6
), p.
061702
.10.1115/1.4043303
16.
Stephan
,
K.
,
1959
, “
Wärmeübergang Und Druckabfall Bei Nicht Ausgebildeter Laminarströmung in Rohren Und in Ebenen Spalten
,”
Chem. Ing. Tech.
,
31
(
12
), pp.
773
778
.10.1002/cite.330311204
17.
Shah
,
R. K.
, and
Bhatti
,
M. S.
,
1987
, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
, S. Kakaç, R. K. Shah and W. Aung, (Eds.),
Wiley
,
New York
, pp.
3.1
137
.
18.
Nellis
,
G.
, and
Klein
,
S. A.
,
2009
, Heat Transfer, University Press, Cambridge
, UK.
19.
Giudice
,
S. D.
,
Savino
,
S.
, and
Nonino
,
C.
,
2017
, “
Entrance and Temperature-Dependent Property Effects on Laminar Duct Flows of Liquids
,”
ASME J. Heat Transfer
,
139
(
3
), p.
034504
.10.1115/1.4035016
20.
Giudice
,
S. D.
,
Savino
,
S.
, and
Nonino
,
C.
,
2014
, “
Nusselt Number Correlations for Simultaneously Developing Laminar Duct Flows of Liquids With Temperature Dependent Properties
,”
J. Phys.: Conf. Ser.
,
547
, p.
012041
.10.1088/1742-6596/547/1/012041
21.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat Plate and in Developing and Fully Developed Flow in an Iso-Thermal Tube
,”
ASME J. Heat Transfer
,
95
(
3
), pp.
416
419
.10.1115/1.3450078
22.
Churchill
,
S. W.
, and
Ozoe
,
H.
,
1973
, “
Correlations for Laminar Forced Convection With Uniform Heating in Flow Over a Plate and in Developing and Folly Developed Flow in a Tube
,”
ASME J. Heat Transfer
,
95
(
1
), pp.
78
84
.10.1115/1.3450009
23.
Stephan
,
K.
,
2001
, “
Thermodynamics
,”
Dubbel, Handbook of Mechanical Engineering
, 20th ed.,
Springer-Verlag
,
Berlin
, pp.
C1
C54
.
24.
Gnielinski
,
V.
,
1993
, “
Heat Transfer in Pipe Flow
,”
VDI-Heat Atlas
,
Springer
,
Berlin
, pp.
693
699
.
25.
Jacimovic
,
B.
,
Genic
,
S.
, and
Lelea
,
D.
,
2018
, “
Calculation of Heat Transfer Coefficient for Laminar Flow in Pipes in Practical Engineering Applications
,”
Heat Transfer Eng.
,
39
(
20
), pp.
1790
1796
.10.1080/01457632.2017.1388949
26.
Chandrupatla
,
A. R.
, and
Sastri
,
V. M. K.
,
1978
, “
Laminar Flow and Heat Transfer to a Non-Newtonian Fluid in an Entrance Region of a Square Duct With Prescribed Constant Axial Wall Heat Flux
,”
Numer. Heat Transfer
,
1
(
2
), pp.
243
254
.10.1080/10407787808913374
27.
Asako
,
Y.
, and
Faghri
,
M.
,
1988
, “
Three-Dimensional Laminar Heat Transfer and Fluid Flow Characteristics in the Entrance Region of a Rhombic Duct
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
855
861
.10.1115/1.3250585
28.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
365
375
.10.1016/j.ijheatmasstransfer.2009.09.020
29.
Renksizbulut
,
M.
, and
Niazmand
,
H.
,
2006
, “
Laminar Flow and Heat Transfer in the Entrance Region of Trapezoidal Channels With Constant Wall Temperature
,”
ASME J. Heat Transfer
,
128
(
1
), pp.
63
74
.10.1115/1.2130405
30.
Etemad
,
S. G.
,
Mujumdar
,
A. S.
, and
Nassef
,
R.
,
1996
, “
Simultaneously Developing Flow and Heat Transfer of Non-Newtonian Fluids in Equilateral Triangular Duct
,”
Appl. Math. Modell.
,
20
(
12
), pp.
898
908
.10.1016/S0307-904X(96)00104-7
31.
Chaves
,
C. L.
,
Quaresma
,
J. N. N.
,
Macedo
,
E. N.
,
Pereira
,
L. M.
, and
Lima
,
J. A.
,
2004
, “
Forced Convection Heat Transfer to Power-Law Non-Newtonian Fluids Inside Triangular Ducts
,”
Heat Transfer Eng.
,
25
(
7
), pp.
23
33
.10.1080/01457630490495814
32.
Wibulswas
,
P.
,
1966
, “
Laminar-Flow Heat-Transfer in Non-Circular Ducts
,” Ph.D. thesis,
University of London
, London.
33.
Ebadian
,
M. A.
, and
Dong
,
Z. F.
,
1998
, “
Forced Convection, Internal Flow in Ducts
,”
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
, Chap. 5.
34.
Lin
,
M. J.
,
Wang
,
Q. W.
, and
Tao
,
W. Q.
,
2000
, “
Developing Laminar Flow and Heat Transfer in Annular-Sector Ducts
,”
Heat Transfer Eng.
,
21
(
2
), pp.
53
61
.10.1080/014576300271022
You do not currently have access to this content.