Abstract

The combined effects of finite ionic sizes and boundary slip on the entropy generation in mixed pressure driven and electroosmotic flows (EOFs) in a soft nanochannel are investigated in this study. The soft nanochannel is represented by a rigid nanochannel covered by a charged polyelectrolyte layer (PEL) on its surface. The entropy generation analysis of EOFs in such a soft nanochannel is addressed for the first time. Under the assumption of high zeta potentials, the electric potential, velocity, and temperature distributions are obtained numerically by using the finite difference method. Subsequently, the thermal transport characteristic and the corresponding entropy generation analysis are discussed based on the obtained velocity and temperature distributions. Our results show that the soft nanochannel in the present model is not appropriate for cooling purposes. We also demonstrate that the steric factor v and the PEL thickness d can enhance the entropy generation rate. However, the slip boundary coefficient γ, the drag parameter α, and the equivalent electric double-layer (EDL) thickness λFCL can restrain this entropy generation rate. In addition, the contributions of Joule heating and viscous friction in the entropy generation rate are more prominent than the contribution due to heat transfer. The present theoretical research can be used to design the efficient thermofluidic devices.

References

1.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid. Mech.
,
36
(
1
), pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
2.
Zheng
,
J. X.
, and
Jian
,
Y. J.
,
2018
, “
Rotating Electroosmotic Flow of Two-Layer Fluids Through a Microparallel Channel
,”
Int. J. Mech. Sci.
,
136
, pp.
293
302
.10.1016/j.ijmecsci.2017.12.039
3.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley-Interscience
,
New York
.
4.
Chanda
,
S.
,
Sinha
,
S.
, and
Das
,
S.
,
2014
, “
Streaming Potential and Electroviscous Effects in Soft Nanochannels: Towards Designing More Efficient Nanofluidic Electrochemomechanical Energy Converters
,”
Soft Matter
,
10
(
38
), pp.
7558
7568
.10.1039/C4SM01490A
5.
Matin
,
M. H.
, and
Ohshima
,
H.
,
2015
, “
Combined Electroosmotically and Pressure Driven Flow in Soft Nanofluidics
,”
J. Colloid. Interface Sci.
,
460
, pp.
361
369
.10.1016/j.jcis.2015.08.070
6.
Jian
,
Y. J.
,
Li
,
F. Q.
,
Liu
,
Y. B.
,
Chang
,
L.
,
Liu
,
Q. S.
, and
Yang
,
L. G.
,
2017
, “
Electrokinetic Energy Conversion Efficiency of Viscoelastic Fluids in a Polyelectrolyte-Grafted Nanochannel
,”
Colloid Surf., B
,
156
, pp.
405
413
.10.1016/j.colsurfb.2017.05.039
7.
Poddar
,
A.
,
Maity
,
D.
,
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2016
, “
Electrokinetics in Polyelectrolyte Grafted Nanofluidic Channels Modulated by the Ion Partitioning Effect
,”
Soft Matter
,
12
(
27
), pp.
5968
5978
.10.1039/C6SM00275G
8.
Matin
,
M. H.
, and
Ohshima
,
H.
,
2016
, “
Thermal Transport Characteristics of Combined Electroosmotic and Pressure Driven Flow in Soft Nanofluidics
,”
J. Colloid. Interface Sci.
,
476
, pp.
167
176
.10.1016/j.jcis.2016.05.005
9.
Lee
,
J.
,
Panzer
,
M. J.
,
He
,
Y.
,
Lodge
,
T. P.
, and
Frisbie
,
C. D.
,
2007
, “
Ion Gel Gated Polymer Thin-Film Transistors
,”
J. Am. Chem. Soc.
,
129
(
15
), pp.
4532
4533
.10.1021/ja070875e
10.
Wei
,
C.
,
Bard
,
A. J.
, and
Feldberg
,
S. W.
,
1997
, “
Current Rectification at Quartz Nanopipet Electrodes
,”
Anal. Chem.
,
69
(
22
), pp.
4627
4633
.10.1021/ac970551g
11.
Donath
,
E.
, and
Voigt
,
E.
,
1986
, “
Streaming Current and Streaming Potential on Structured Surfaces
,”
J. Colloid. Interface Sci.
,
109
(
1
), pp.
122
139
.10.1016/0021-9797(86)90288-2
12.
Ohshima
,
H.
, and
Kondo
,
T.
,
1990
, “
Electrokinetic Flow Between Two Parallel Plates With Surface Charge Layers: Electro-Osmosis and Streaming Potential
,”
J. Colloid. Interface Sci.
,
135
(
2
), pp.
443
448
.10.1016/0021-9797(90)90014-F
13.
Keh
,
H. J.
, and
Liu
,
Y. C.
,
1995
, “
Electrokinetic Flow in a Circular Capillary With a Surface Charge Layer
,”
J. Colloid. Interface Sci.
,
172
(
1
), pp.
222
229
.10.1006/jcis.1995.1246
14.
Kilic
,
M. S.
,
Bazant
,
M. Z.
, and
Ajdari
,
A.
,
2007
, “
Steric Effects in the Dynamics of Electrolytes at Large Applied Voltages—I: Double-Layer Charging
,”
Phys. Rev. E.
,
75
(
2
), p.
021502
.10.1103/PhysRevE.75.021502
15.
Chakraborty
,
J.
,
Dey
,
R.
, and
Chakraborty
,
S.
,
2012
, “
Consistent Accounting of Steric Effects for Prediction of Streaming Potential in Narrow Confinements
,”
Phys. Rev. E
,
86
(
6
), p.
061504
.10.1103/PhysRevE.86.061504
16.
Yazdi
,
A. A.
,
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2015
, “
Steric Effects on Electrokinetic Flow of Non-Linear Biofluids
,”
Colloid. Surf., A
,
484
, pp.
394
401
.10.1016/j.colsurfa.2015.08.018
17.
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2013
, “
Ionic Size Dependent Electroosmosis in Ion-Selective Microchannels and Nanochannels
,”
Electrophoresis
,
34
(
15
), pp.
2193
2198
.10.1002/elps.201300094
18.
Dey
,
R.
,
Ghonge
,
T.
, and
Chakraborty
,
S.
,
2013
, “
Steric-Effect-Induced Alteration of Thermal Transport Phenomenon for Mixed Electroosmotic and Pressure Driven Flows Through Narrow Confinements
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
251
262
.10.1016/j.ijheatmasstransfer.2012.09.038
19.
Storey
,
B. D.
,
Edwards
,
L. R.
,
Kilic
,
M. S.
, and
Bazant
,
M. Z.
,
2008
, “
Steric Effects on AC Electro-Osmosis in Dilute Electrolytes
,”
Phys. Rev. E
,
77
(
3 Pt. 2
), p.
036317
.10.1103/PhysRevE.77.036317
20.
Cervera
,
J.
,
Morales
,
V. G.
, and
Pellicer
,
J.
,
2003
, “
Ion Size Effects on the Electrokinetic Flow in Nanoporous Membranes Caused by Concentration Gradients
,”
J. Phys. Chem. B
,
107
(
33
), pp.
8300
8309
.10.1021/jp027187w
21.
Garai
,
A.
, and
Chakraborty
,
S.
,
2010
, “
Steric Effect and Slip-Modulated Energy Transfer in Narrow Fluidic Channels With Finite Aspect Ratios
,”
Electrophoresis
,
31
(
5
), pp.
843
849
.10.1002/elps.200900676
22.
Xing
,
J. N.
, and
Jian
,
Y. J.
,
2018
, “
Steric Effects on Electroosmotic Flow in Soft Nanochannels
,”
Meccanica
,
53
(
1–2
), pp.
135
144
.10.1007/s11012-017-0703-4
23.
Zhao
,
L.
, and
Liu
,
L. H.
,
2010
, “
Entropy Generation Analysis of Electro-Osmotic Flow in Open-End and Closed-End Micro-Channels
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
418
427
.10.1016/j.ijthermalsci.2009.07.009
24.
Gorla
,
R. S. R.
,
2013
, “
Entropy Generation in Electro-Osmotic Flow in Microchannels
,”
Int. J. Micro-Nano Scale Transp.
,
4
(
1–2
), pp.
1
10
.10.1260/1759-3093.4.1-2.1
25.
Escandón
,
J.
,
Bautista
,
O.
, and
Méndez
,
F.
,
2013
, “
Entropy Generation in Purely Electroosmotic Flows of Non-Newtonian Fluids in a Microchannel
,”
Energy
,
55
, pp.
486
496
.10.1016/j.energy.2013.04.030
26.
Goswami
,
P.
,
Mondal
,
P. K.
,
Datta
,
A.
, and
Chakraborty
,
S.
,
2016
, “
Entropy Generation Minimization in an Electroosmotic Flow of Non-Newtonian Fluid: Effect of Conjugate Heat Transfer
,”
ASME J. Heat Transfer
,
138
(
5
), p.
051704
.10.1115/1.4032431
27.
Xie
,
Z. Y.
, and
Jian
,
Y. J.
,
2017
, “
Entropy Generation of Two-Layer Magnetohydrodynamic Electroosmotic Flow Through Microparallel Channels
,”
Energy
,
139
, pp.
1080
1093
.10.1016/j.energy.2017.08.038
28.
Kilic
,
M. S.
,
Bazant
,
M. Z.
, and
Ajdari
,
A.
,
2007
, “
Steric Effects in the Dynamics of Electrolytes at Large Applied Voltages—II: Modified Poisson-Nernst-Planck Equations
,”
Phys. Rev. E
,
75
(
2
), p.
021503
.10.1103/PhysRevE.75.021503
29.
Chanda
,
S.
, and
Das
,
S.
,
2014
, “
Effect of Finite Ion Sizes in an Electrostatic Potential Distribution for a Charged Soft Surface in Contact With an Electrolyte Solution
,”
Phys. Rev. E
,
89
(
1
), p.
012307
.10.1103/PhysRevE.89.012307
30.
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2011
, “
Steric-Effect Induced Alterations in Streaming Potential and Energy Transfer Efficiency of Non-Newtonian Fluids in Narrow Confinements
,”
Langmuir
,
27
(
19
), pp.
12243
12252
.10.1021/la202273e
31.
Levine
,
S.
,
Marriott
,
J. R.
,
Neale
,
G.
, and
Epstein
,
N.
,
1975
, “
Theory of Electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-Potentials
,”
J. Colloid Interface Sci.
,
52
(
1
), pp.
136
149
.10.1016/0021-9797(75)90310-0
32.
Sarkar
,
S.
, and
Ganguly
,
S.
,
2015
, “
Fully Developed Thermal Transport in Combined Pressure and Electroosmotically Driven Flow of Nanofluid in a Microchannel Under the Effect of a Magnetic Field
,”
Microfluid. Nanofluid.
,
18
(
4
), pp.
623
636
.10.1007/s10404-014-1461-4
33.
Jian
,
Y. J.
,
2015
, “
Transient MHD Heat Transfer and Entropy Generation in a Microparallel Channel Combined With Pressure and Electroosmotic Effects
,”
Int. J. Heat Mass Transfer
,
89
, pp.
193
205
.10.1016/j.ijheatmasstransfer.2015.05.045
34.
Bejan
,
A.
,
1980
, “
Second Law Analysis in Heat Transfer
,”
Energy
,
5
(
8–9
), pp.
720
732
.10.1016/0360-5442(80)90091-2
35.
Matin
,
M. H.
, and
Khan
,
W. A.
,
2013
, “
Entropy Generation Analysis of Heat and Mass Transfer in Mixed Electrokinetically and Pressure Driven Flow Through a Slit Microchannel
,”
Energy
,
56
, pp.
207
217
.10.1016/j.energy.2013.04.058
36.
Shamshiri
,
M.
,
Khazaeli
,
R.
,
Ashrafizaadeh
,
M.
, and
Mortazavi
,
S.
,
2012
, “
Heat Transfer and Entropy Generation Analyses Associated With Mixed Electrokinetically Induced and Pressure-Driven Power-Law Microflows
,”
Energy
,
42
(
1
), pp.
157
169
.10.1016/j.energy.2012.03.072
37.
Squires
,
T. M.
, and
Quake
,
S. R.
,
2005
, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
977
1026
.10.1103/RevModPhys.77.977
You do not currently have access to this content.