Abstract

In this paper, the influence of outlet arrangement and plenum structure on impingement cooling is experimentally and numerically investigated in a typical 1-U confined server space. Three outlets include Z-type, bilateral, and U-type arrangements, and the plenum configurations contain partially inclined, fully inclined, and staged layouts. As a result, using the U-type outlet or staged plenum may prominently compromise the impingement cooling performance on the target plates with lower pumping power. With numerical investigation, it is found that, for the case with Z-type outlet, the flowrate of jet impingement increases alongside the streamwise direction. Besides, the impingement stagnation region on target plates with the minimum thermal resistance may shift toward the outlet. Meanwhile, the uniformity of jet impingement can be improved by 10.7% and 50.3% when the bilateral and U-type outlets are applied, respectively, and the jet impingement is changed to perpendicular direction due to the opposite cross flow from the coming flow direction. On the other hand, by applying the inclined plenum and staged plenum, the uniformity of jet impingement can be dramatically improved by 113.9% and 215.1%, respectively. However, the local jet impingement velocity distribution is still nonuniform. Hence, a novel design of impingement plate based on the concept of Coanda effect is proposed. The peak value of the thermal resistance on target plate can be reduced by 21.8% and 16.0% at the center region and the fore part of the jet array.

References

References
1.
Ekkad
,
S. V.
,
Parida
,
P.
, and
Ngo
,
K.
,
2012
, “
High Efficiency Minichannel and Mini-Impingement Cooling Systems for Hybrid Electric Vehicle Electronics
,”
ASME
Paper No. ICNMM2012-73041. 10.1115/ICNMM2012-73041
2.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H. D.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.10.1016/j.ijheatmasstransfer.2013.12.006
3.
Wang
,
X. L.
,
Yan
,
H. B.
,
Lu
,
T. J.
,
Song
,
S. J.
, and
Kim
,
T.
,
2014
, “
Heat Transfer Characteristics of an Inclined Impinging Jet on a Curved Surface in Crossflow
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081702
.10.1115/1.4027389
4.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement−A Review
,”
Heat Transfer Res.
,
42
(
2
), p.
101
.10.1615/HeatTransRes.v42.i2.30
5.
Angioletti
,
M.
,
Di Tommaso
,
R. M.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
6.
Dano
,
B. P. E.
,
Liburdy
,
J. A.
, and
Kanokjaruvijit
,
K.
,
2005
, “
Flow Characteristics and Heat Transfer Performances of a Semiconfined Impinging Array of Jets: Effect of Nozzle Geometry
,”
Int. J. Heat Mass Transfer
,
48
(
3–4
), pp.
691
701
.10.1016/j.ijheatmasstransfer.2004.07.046
7.
Pounds
,
D. A.
,
Dong
,
J.
,
Cheng
,
P.
, and
Ma
,
H.
,
2013
, “
Experimental Investigation and Theoretical Analysis of an Ejector Refrigeration System
,”
Int. J. Therm. Sci.
,
67
, pp.
200
209
.10.1016/j.ijthermalsci.2012.11.001
8.
Dong
,
J.
,
Wang
,
W.
,
Han
,
Z.
,
Ma
,
H.
,
Deng
,
Y.
,
Su
,
F.
, and
Pan
,
X.
,
2018
, “
Experimental Investigation of the Steam Ejector in a Single-Effect Thermal Vapor Compression Desalination System Driven by a Low-Temperature Heat Source
,”
Energies
,
11
(
9
), p.
2282
.10.3390/en11092282
9.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2008
, “
Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6243
6253
.10.1016/j.ijheatmasstransfer.2008.05.004
10.
Marzec
,
K.
, and
Kucaba-Pietal
,
A.
,
2014
, “
Heat Transfer Characteristic of an Impingement Cooling System With Different Nozzle Geometry
,”
21st Fluid Mechanics Conference (FMC)
, Krakow, Poland, June 15–18, Paper No.
012038
.https://pdfs.semanticscholar.org/43e1/650070974004ed432bdb4249b6c2c2b5ff2d.pdf
11.
Nirmalkumar
,
M.
,
Katti
,
V.
, and
Prabhu
,
S. V.
,
2011
, “
Local Heat Transfer Distribution on a Smooth Flat Plate Impinged by a Slot Jet
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
727
738
.10.1016/j.ijheatmasstransfer.2010.09.030
12.
Xu
,
L.
,
Lan
,
J.
,
Ma
,
Y. H.
,
Gao
,
J. M.
, and
Li
,
Y. L.
,
2017
, “
Numerical Study on Heat Transfer by Swirling Impinging Jets Issuing From a Screw-Thread Nozzle
,”
Int. J. Heat Mass Transfer
,
115
, pp.
232
237
.10.1016/j.ijheatmasstransfer.2017.07.053
13.
Abraham
,
S.
, and
Vedula
,
R. P.
,
2016
, “
Effectiveness and Heat Transfer Characteristics for a Single Heated Rectangular Jet With Different Aspect Ratios Impinging Perpendicularly on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1012
1023
.10.1016/j.ijheatmasstransfer.2016.06.086
14.
Jung
,
E. Y.
,
Park
,
C. U.
,
Lee
,
D. H.
,
Kim
,
K. M.
, and
Cho
,
H. H.
,
2018
, “
Effect of the Injection Angle on Local Heat Transfer in a Showerhead Cooling With Array Impingement Jets
,”
Int. J. Therm. Sci.
,
124
, pp.
344
355
.10.1016/j.ijthermalsci.2017.10.033
15.
O'Donovan
,
T. S.
, and
Murray
,
D. B.
,
2007
, “
Jet Impingement Heat transfer—Part I: Mean and Root-Mean-Square Heat Transfer and Velocity Distributions
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3291
3301
.10.1016/j.ijheatmasstransfer.2007.01.044
16.
Huang
,
Y. Z.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.10.2514/2.6304
17.
Lam
,
P. A. K.
, and
Prakash
,
K. A.
,
2017
, “
A Numerical Investigation and Design Optimization of Impingement Cooling System With an Array of Air Jets
,”
Int. J. Heat Mass Transfer
,
108
, pp.
880
900
.10.1016/j.ijheatmasstransfer.2016.12.017
18.
Zukowski
,
M.
,
2013
, “
Heat Transfer Performance of a Confined Single Slot Jet of Air Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
484
490
.10.1016/j.ijheatmasstransfer.2012.10.069
19.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
1999
, “
Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
3
), pp.
399
404
.10.1109/6144.796542
20.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
,
2000
, “
Heat Transfer From Pin-Fin Heat Sinks Under Multiple Impinging Jets
,”
IEEE Trans. Adv. Packag.
,
23
(
1
), pp.
113
120
.10.1109/6040.826769
21.
El-Sheikh
,
H. A.
, and
Gurimella
,
S. V.
,
2000
, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
2
), pp.
300
308
.10.1109/6144.846768
22.
Ren
,
Z.
,
Buzzard
,
W. C.
,
Ligrani
,
P. M.
,
Nakamata
,
C.
, and
Ueguchi
,
S.
,
2017
, “
Impingement Jet Array Heat Transfer: Target Surface Roughness Shape, Reynolds Number Effects
,”
J. Thermophys. Heat Transfer
,
31
(
2
), pp.
346
357
.10.2514/1.T4951
23.
Ligrani
,
P. M.
,
Ren
,
Z.
, and
Buzzard
,
W. C.
,
2017
, “
Impingement Jet Array Heat Transfer With Small-Scale Cylinder Target Surface Roughness Arrays
,”
Int. J. Heat Mass Transfer
,
107
, pp.
895
905
.10.1016/j.ijheatmasstransfer.2016.10.123
24.
Geers
,
L. F.
,
Tummers
,
M. J.
, and
Hanjalić
,
K.
,
2004
, “
Experimental Investigation of Impinging Jet Arrays
,”
Exp. Fluids
,
36
(
6
), pp.
946
958
.10.1007/s00348-004-0778-2
25.
Caliskan
,
S.
,
Baskaya
,
S.
, and
Calisir
,
T.
,
2014
, “
Experimental and Numerical Investigation of Geometry Effects on Multiple Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
75
, pp.
685
703
.10.1016/j.ijheatmasstransfer.2014.04.005
26.
Xing
,
Y. F.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.10.1016/j.ijthermalsci.2010.11.008
27.
Xing
,
Y. F.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
28.
Yamane
,
Y.
,
Ichikawa
,
Y.
,
Yamamoto
,
M.
, and
Honami
,
S.
,
2012
, “
Effect of Injection Parameters on Jet Array Impingement Heat Transfer
,”
Int. J. Gas Turbine Propul. Power Syst.
,
4
(
1
), pp.
27
34
.http://www.gtsj.org/english/jgpp/v04n01tp04.pdf
29.
San
,
J. Y.
, and
Lai
,
M. D.
,
2001
, “
Optimum Jet-to-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
3997
4007
.10.1016/S0017-9310(01)00043-6
30.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Effect of Jet-Jet Spacing on Convective Heat Transfer to Confined, Impinging Arrays of Axisymmetrical Air-Jets
,”
Int. J. Heat Mass Transfer
,
37
(
18
), pp.
2859
2869
.10.1016/0017-9310(94)90340-9
31.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
32.
Li
,
W. H.
,
Xu
,
M. H.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2017
, “
Experimental Investigation of Local and Average Heat Transfer Coefficients Under an Inline Impinging Jet Array, Including Jets With Low Impingement Distance and Inclined Angle
,”
ASME J. Heat Transfer
,
139
(
1
), p.
012201
.10.1115/1.4034165
33.
Li
,
W.
,
Li
,
X.
,
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2017
, “
Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization
,”
ASME J. Turbomach.
,
139
(
4
), p.
041002
.10.1115/1.4035045
34.
Shin
,
S.
, and
Kwak
,
J. S.
,
2008
, “
Effect of Hole Shape on the Heat Transfer in a Rectangular Duct With Perforated Blockage Walls
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1945
1951
.10.1007/s12206-008-0736-7
35.
McInturff
,
P.
,
Suzuki
,
M.
,
Ligrani
,
P.
,
Nakamata
,
C.
, and
Lee
,
D. H.
,
2018
, “
Effects of Hole Shape on Impingement Jet Array Heat Transfer With Small-Scale, Target Surface Triangle Roughness
,”
Int. J. Heat Mass Transfer
,
127
pp.
585
597
.10.1016/j.ijheatmasstransfer.2018.06.025
36.
Sallam
,
K.
,
Aalburg
,
C.
, and
Faeth
,
G.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
,
42
(
12
), pp.
2529
2540
.10.2514/1.3749
37.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.10.1146/annurev-fluid-120710-101115
38.
Wang
,
L.
,
Sundén
,
B.
,
Borg
,
A.
, and
Abrahamsson
,
H.
,
2011
, “
Heat Transfer Characteristics of an Impinging Jet in Crossflow
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122202
.10.1115/1.4004527
39.
Siw
,
S. C.
,
Miller
,
N.
,
Alvin
,
M.
, and
Chyu
,
M.
,
2017
, “
Heat Transfer Performance of Internal Cooling Channel With Single-Row Jet Impingement Array by Varying Flow Rates
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
1
), p.
011015
.10.1115/1.4034686
40.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Lee
,
D. H.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.10.1016/j.ijheatmasstransfer.2014.03.040
41.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.10.1016/j.ijthermalsci.2014.09.003
42.
Moffat
,
R.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.10.1115/1.3241818
43.
ANSYS Inc.,
2017
, “ANSYS Academic Research CFX, Release 18.2,” ANSYS Inc., Canonsburg, PA.
44.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
45.
Royne
,
A.
, and
Dey
,
C. J.
,
2006
, “
Effect of Nozzle Geometry on Pressure Drop and Heat Transfer in Submerged Jet Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
800
804
.10.1016/j.ijheatmasstransfer.2005.11.014
You do not currently have access to this content.