Abstract

Twin roll casting is a process used to produce thin strips of metals by continuously pouring melt on to rotating rolls. In order to make the process more productive and economical, high roll speed is recommended. The numerical simulation of high-speed twin roll casting is performed by analyzing fluid flow, heat transfer, and solidification behavior of Al–Cu hypo-eutectic alloy. The flow field, temperature, liquid fraction distribution, and cooling rate are analyzed by solving governing transport equations of continuity, momentum, energy, and turbulence. The low-Re Turbulence model is used to capture turbulence effects in the process and enthalpy-porosity technique used to account for the rise in viscosity due to phase change. The effect of melt pool height and roll velocity on average cooling rate along the strip surface is investigated. It is found that the increase in melt pool height and roll speed increases the average cooling rate along strip surface due to rise in heat transfer up to certain roll velocity but beyond that process fails due to breakout. The average cooling rate of process affects the microstructure and properties of strips. It is found that higher cooling rates result in a decrement of secondary dendrite arm spacing (SDAS) of 1 mm thin strip along strip surface results in the fine and homogeneous microstructure.

References

References
1.
Shibuya
,
K.
,
Kogiku
,
F.
,
Yukumoto
,
M.
,
Miyake
,
S.
,
Ozawa
,
M.
, and
Kan
,
T.
,
1988
, “
Development of a Rapid Solidification Process With a Double-Roller Method
,”
Mater. Sci. Eng.
,
98
, pp.
25
28
.10.1016/0025-5416(88)90119-X
2.
Haga
,
T.
,
Ikawa
,
M.
,
Watari
,
H.
,
Suzuki
,
K.
, and
Kumai
,
S.
,
2005
, “
High-Speed Twin Roll Casting of Thin Aluminum Alloy Strips Containing Fe Impurities
,”
Mater. Trans.
,
46
(
12
), pp.
2596
2601
.10.2320/matertrans.46.2596
3.
Watari
,
H.
,
Koga
,
N.
,
Davey
,
K.
,
Haga
,
T.
, and
Ragado
,
M. T. A.
,
2006
, “
Warm Deep Drawing of Wrought Magnesium Alloy Sheets Produced by Semi-Solid Roll Strip-Casting Process
,”
Int. J. Mach. Tools Manuf.
,
46
(
11
), pp.
1233
1237
.10.1016/j.ijmachtools.2006.01.018
4.
Watari
,
H.
,
Haga
,
T.
,
Koga
,
N.
, and
Davey
,
K.
,
2007
, “
Feasibility Study of Twin Roll Casting Process for Magnesium Alloys
,”
J. Mater. Process. Technol.
,
192–193
, pp.
300
305
.10.1016/j.jmatprotec.2007.04.009
5.
Barekar
,
N. S.
, and
Dhindaw
,
B. K.
,
2014
, “
Twin-Roll Casting of Aluminum Alloys—An Overview
,”
Mater. Manuf. Processes
,
29
(
6
), pp.
651
661
.10.1080/10426914.2014.912307
6.
Mizoguchi
,
T.
, and
Miyazawa
,
K.-I.
,
1995
, “
Formation of Solidification Structure in Twin Roll Casting Process of 18Cr–8Ni Stainless Steel
,”
ISIJ Int.
,
35
(
6
), pp.
771
777
.10.2355/isijinternational.35.771
7.
Haga
,
T.
, and
Suzuki
,
S.
,
2001
, “
A High Speed Twin Roll Caster for Aluminum Alloy Strip
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
291
295
.10.1016/S0924-0136(01)00673-2
8.
Jiang
,
B.
,
Liu
,
W.
,
Qiu
,
D.
,
Zhang
,
M. X.
, and
Pan
,
F.
,
2012
, “
Grain Refinement of Ca Addition in a Twin-Roll-Cast Mg–3Al–1Zn Alloy
,”
Mater. Chem. Phys.
,
133
(
2–3
), pp.
611
616
.10.1016/j.matchemphys.2011.12.087
9.
Pan
,
F.
,
Zhou
,
S.
,
Liang
,
X.
,
Ding
,
P.
, and
Xu
,
C.
,
1997
, “
Thin Strip Casting of High Speed Steels
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
792
796
.10.1016/S0924-0136(96)02726-4
10.
Seyedein
,
S. H.
, and
Hasan
,
M.
,
1997
, “
Numerical Simulation of Turbulent Flow and Heat Transfer in the Wedge-Shaped Liquid Metal Pool of a Twin-Roll Caster
,”
Numer. Heat Transfer, Part A
,
31
(
4
), pp.
393
410
.10.1080/10407789708914044
11.
Hwang
,
S. M.
, and
Kang
,
Y. H.
,
1995
, “
Analysis of Flow and Heat Transfer in Twin-Roll Strip Casting by Finite Element Method
,”
J. Eng. Ind.
,
117
(
3
), pp.
304
315
.10.1115/1.2804335
12.
Zhang
,
X. M.
,
Jiang
,
Z. Y.
,
Yang
,
L. M.
,
Liu
,
X. H.
,
Wang
,
G. D.
, and
Tieu
,
A. K.
,
2007
, “
Modelling of Coupling Flow and Temperature Fields in Molten Pool During Twin-Roll Strip Casting Process
,”
J. Mater. Process. Technol.
,
187–188
, pp.
339
343
.10.1016/j.jmatprotec.2006.11.064
13.
Miao
,
Y. C.
,
Zhang
,
X. M.
,
Di
,
H. S.
, and
Wang
,
G. D.
,
2006
, “
Numerical Simulation of the Fluid Flow, Heat Transfer, and Solidification of Twin-Roll Strip Casting
,”
J. Mater. Process. Technol.
,
174
(
1–3
), pp.
7
13
.10.1016/j.jmatprotec.2005.01.002
14.
Bae
,
J. W.
,
Kang
,
C. G.
, and
Kang
,
S. B.
,
2007
, “
Mathematical Model for the Twin Roll Type Strip Continuous Casting of Magnesium Alloy Considering Thermal Flow Phenomena
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
251
255
.10.1016/j.jmatprotec.2007.03.058
15.
Cao
,
G. M.
,
Li
,
C. G.
,
Liu
,
Z. Y.
,
Wu
,
D.
,
Wang
,
G. D.
, and
Liu
,
X. H.
,
2008
, “
Numerical Simulation of Molten Pool and Control Strategy of Kiss Point in a Twin-Roll Strip Casting Process
,”
Acta Metall. Sin.
,
21
(
6
), pp.
459
468
.10.1016/S1006-7191(09)60009-0
16.
Sahoo
,
S.
,
Kumar
,
A.
,
Dhindaw
,
B. K.
, and
Ghosh
,
S.
,
2012
, “
Modeling and Experimental Validation of Rapid Cooling and Solidification During High-Speed Twin-Roll Strip Casting of Al–33 wt Pct Cu
,”
Metall. Mater. Trans. B
,
43
(
4
), pp.
915
924
.10.1007/s11663-012-9659-x
17.
Sahoo
,
S.
,
2016
, “
Review on Vertical Twin-Roll Strip Casting: A Key Technology for Quality Strips
,”
J. Metall.
,
2016
, p.
1038950
.https://www.hindawi.com/journals/jm/2016/1038950/
18.
Sahoo
,
S.
,
2015
, “
Effect of Process Parameters on Solidification of Al33Cu Strip in High Speed Twin Roll Strip Casting—A Numerical Study
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
75
, p.
012013
.https://iopscience.iop.org/article/10.1088/1757-899X/75/1/012013
19.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
20.
Vakhrushev
,
A.
,
Wu
,
M.
,
Tang
,
Y.
,
Hackl
,
G.
, and
Nitzl
,
G.
,
2012
, “
Modeling of the Flow-Solidification Interaction in Thin Slab Casting
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
33
, p.
012014
..https://iopscience.iop.org/article/10.1088/1757-899X/33/1/012014
21.
ANSYS Inc.,
2013
, “
ANSYS Software
,” ANSYS Inc., Canonsburg, CA.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
23.
Guthrie
,
R. I. L.
,
Isac
,
M.
,
Kim
,
J. S.
, and
Tavares
,
R. P.
,
2000
, “
Measurements, Simulations, and Analyses of Instantaneous Heat Fluxes From Solidifying Steels to the Surfaces of Twin Roll Casters and of Aluminum to Plasma-Coated Metal Substrates
,”
Metall. Mater. Trans. B
,
31
(
5
), pp.
1031
1047
.10.1007/s11663-000-0079-y
24.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
1st ed.
,
McGraw-Hill
,
New York
.
25.
Shukla
,
A. K.
,
Deo
,
B.
, and
Robertson
,
D. G. C.
,
2013
, “
Role of Air Gap in Scrap Dissolution Process
,”
Metall. Mater. Trans. B
,
44
(
6
), pp.
1398
1406
.10.1007/s11663-013-9906-9
26.
Rocha
,
O. L.
,
Siqueira
,
C. A.
, and
Garcia
,
A.
,
2003
, “
Heat Flow Parameters Affecting Dendrite Spacings During Unsteady-State Solidification of Sn-Pb and Al–Cu Alloys
,”
Metall. Mater. Trans. A
,
34
(
4
), pp.
995
1006
.10.1007/s11661-003-0229-3
27.
Schick
,
M.
,
Brillo
,
J.
,
Egry
,
I.
, and
Hallstedt
,
B.
,
2012
, “
Viscosity of Al–Cu Liquid Alloys: Measurement and Thermodynamic Description
,”
J. Mater. Sci.
,
47
(
23
), pp.
8145
8152
.10.1007/s10853-012-6710-x
28.
Guthrie
,
R. I. L.
, and
Tavares
,
R. P.
,
1998
, “
Mathematical and Physical Modelling of Steel Flow and Solidification in Twin-Roll/Horizontal Belt Thin-Strip Casting Machines
,”
Appl. Math. Modell.
,
22
(
11
), pp.
851
872
.10.1016/S0307-904X(98)10027-6
29.
Lee
,
S. W.
,
1993
, “
A Computer Modelling of Flowfield and Solidification in Rotating Bank of Twin-Roll Strip Casting
,”
Korean J. Chem. Eng.
,
10
(
3
), pp.
182
187
.10.1007/BF02705141
30.
Sahai
,
Y.
, and
Gupta
,
M.
,
2000
, “
Mathematical Modeling of Fluid Flow, Heat Transfer, and Solidification in Two-Roll Melt Drag Thin Strip Casting of Steel
,”
ISIJ Int.
,
40
(
2
), pp.
144
152
.https://www.jstage.jst.go.jp/article/isijinternational1989/40/2/40_2_144/_article
31.
Kasperovich
,
G.
,
Volkmann
,
T.
,
Ratke
,
L.
, and
Herlach
,
D.
,
2008
, “
Microsegregation During Solidification of an Al–Cu Binary Alloy at Largely Different Cooling Rates (0.01 to 20,000 K/s): Modeling and Experimental Study
,”
Metall. Mater. Trans. A
,
39
(
5
), pp.
1183
1191
.10.1007/s11661-008-9505-6
32.
Kopp
,
R.
,
Hagemann
,
F.
,
Hentschel
,
L.
,
Schmitz
,
J. W.
, and
Senk
,
D.
,
1998
, “
Thin-Strip Casting—Modeling of the Combined Casting/Metal-Forming Process
,”
J. Mater. Process. Technol.
,
80–81
, pp.
458
462
.10.1016/S0924-0136(98)00199-X
33.
Chang
,
J. G.
, and
Weng
,
C. I.
,
1998
, “
Analysis of Flow and Heat Transfer in Twin-Roll Strip Casting Process
,”
Int. J. Heat Mass Transfer
,
41
(
2
), pp.
475
487
.10.1016/S0017-9310(97)00137-3
34.
Cruchaga
,
M. A.
,
Celentano
,
D. J.
, and
Lewis
,
R. W.
,
2003
, “
Modelling of Twin-Roll Strip Casting Processes
,”
Commun. Numer. Methods Eng.
,
19
(
8
), pp.
623
635
.10.1002/cnm.616
35.
Chang
,
J. G.
, and
Weng
,
C. I.
,
1997
, “
Numerical Modeling of Twin-Roll Casting by the Coupled Fluid Flow and Heat Transfer Model
,”
Int. J. Numer. Methods Eng.
,
40
(
3
), pp.
493
509
.10.1002/(SICI)1097-0207(19970215)40:3<493::AID-NME76>3.0.CO;2-L
You do not currently have access to this content.