Abstract

This paper numerically investigates the heat transfer enhancement using rectangular winglet pairs in a fin-and-tube type heat transfer surface having five inline rows of tubes. The influence of number of winglets, attack angles of the winglets, and their location has been analyzed under laminar flow conditions with Reynolds number ranging 400–1500. To account for the combined effect of heat transfer enhancement and pressure drop penalty, an enhancement factor is also discussed by changing the winglet pair's number and location. The numerical results show that pressure drop can be reduced significantly by placing the winglet more toward the exit of the flow channel. Streamwise distance and spanwise distance of the winglet pairs have been investigated for maximum enhancement factor. The numerically obtained results show that the winglets number and their placement at different locations have a major influence on enhancement factor. The results show that both the heat transfer and the pressure drop increase with an increase in attack angle of the winglets and best angle for the highest enhancement factor has been found out. Correlations have been developed for streamwise distance, spanwise distance, and angle of attack for different range of Reynolds numbers.

References

References
1.
Edwards
,
F. J.
, and
Alker
,
C. J. R.
,
1974
, “
The Improvement of Forced Convection Surface Heat Transfer Using Surface Protrusions in the Form of (a) Cubes and (b) Vortex Generators
,”
Fifth International Heat Transfer Conference (IHTC)
, Vol.
3
,
Tokyo, Japan
,
Sept. 3–7
, pp.
244
248
.10.1615/IHTC5.2140
2.
Fiebig
,
M.
,
Kallweit
,
P.
, and
Mitra
,
N. K.
,
1986
, “
Wing Type Vortex Generators for Heat Transfer Enhancement
,”
Eighth International Heat Transfer Conference
, Vol.
6
,
San Francisco, CA
,
Aug. 17–22
, pp.
2909
2913
.
3.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.10.1016/0894-1777(91)90024-L
4.
Torii
,
K.
,
Kwak
,
K. M.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3795
3801
.10.1016/S0017-9310(02)00080-7
5.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2007
, “
A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger
,”
ASME J. Heat Transfer
,
129
(
9
), pp.
1156
1167
.10.1115/1.2740308
6.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.10.1016/j.ijrefrig.2007.04.011
7.
Lin
,
C. N.
,
Liu
,
Y. W.
, and
Leu
,
J. S.
,
2008
, “
Heat Transfer and Fluid Flow Analysis for Plate-Fin and Oval Tube Heat Exchangers With Vortex Generators
,”
Heat Transfer Eng.
,
29
(
7
), pp.
588
596
.10.1080/01457630801922279
8.
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Sinha
,
A.
,
2012
, “
Augmentation of Heat Transfer by Creation of Streamwise Longitudinal Vortices Using Vortex Generators
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
406
424
.10.1080/01457632.2012.614150
9.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator: Part A—Verification of Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1179
1191
.10.1016/j.ijheatmasstransfer.2007.03.032
10.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2011
, “
Impact of Delta Winglet Vortex Generators on the Performance of a Novel Fin-Tube Surfaces With Two Rows of Tubes in Different Diameters
,”
Energy Convers. Manag.
,
52
(
8–9
), pp.
2895
2901
.10.1016/j.enconman.2011.03.002
11.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5386
5399
.10.1016/j.ijheatmasstransfer.2010.07.017
12.
Chu
,
P.
,
He
,
Y. L.
,
Lei
,
Y. G.
,
Tian
,
L. T.
, and
Li
,
R.
,
2009
, “
Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
859
876
.10.1016/j.applthermaleng.2008.04.021
13.
Lei
,
Y. G.
,
He
,
Y. L.
,
Tian
,
L. T.
,
Chu
,
P.
, and
Tao
,
W. Q.
,
2010
, “
Hydrodynamics and Heat Transfer Characteristics of a Novel Heat Exchanger With Delta-Winglet Vortex Generators
,”
Chem. Eng. Sci.
,
65
(
5
), pp.
1551
1562
.10.1016/j.ces.2009.10.017
14.
He
,
Y. L.
,
Chu
,
P.
,
Tao
,
W. Q.
,
Zhang
,
Y. W.
, and
Xie
,
T.
,
2013
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet-Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.10.1016/j.applthermaleng.2012.02.040
15.
Sinha
,
A.
,
Raman
,
K. A.
,
Chattopadhyay
,
H.
, and
Biswas
,
G.
,
2013
, “
International Journal of Heat and Mass Transfer Effects of Different Orientations of Winglet Arrays on the Performance of Plate-Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
202
214
.10.1016/j.ijheatmasstransfer.2012.10.034
16.
Sinha
,
A.
,
Chattopadhyay
,
H.
,
Iyengar
,
A. K.
, and
Biswas
,
G.
,
2016
, “
Enhancement of Heat Transfer in a Fin-Tube Heat Exchanger Using Rectangular Winglet Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
101
, pp.
667
681
.10.1016/j.ijheatmasstransfer.2016.05.032
17.
Caliskan
,
S.
,
2014
, “
Experimental Investigation of Heat Transfer in a Channel With New Winglet-Type Vortex Generators
,”
Int. J. Heat Mass Transfer
,
78
, pp.
604
614
.10.1016/j.ijheatmasstransfer.2014.07.043
18.
Li
,
M. J.
,
Zhou
,
W. J.
,
Zhang
,
J. F.
,
Fan
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
Heat Transfer and Pressure Performance of a Plain Fin With Radiantly Arranged Winglets Around Each Tube in Fin-and-Tube Heat Transfer Surface
,”
Int. J. Heat Mass Transfer
,
70
, pp.
734
744
.10.1016/j.ijheatmasstransfer.2013.11.024
19.
Gholami
,
A. A.
,
Wahid
,
M. A.
, and
Mohammed
,
H. A.
,
2014
, “
Heat Transfer Enhancement and Pressure Drop for Fin-and-Tube Compact Heat Exchangers With Wavy Rectangular Winglet-Type Vortex Generators
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
132
140
.10.1016/j.icheatmasstransfer.2014.02.016
20.
Gholami
,
A.
,
Wahid
,
M. A.
, and
Mohammed
,
H. A.
,
2017
, “
Thermal–Hydraulic Performance of Fin-and-Oval Tube Compact Heat Exchangers With Innovative Design of Corrugated Fin Patterns
,”
Int. J. Heat Mass Transfer
,
106
, pp.
573
592
.10.1016/j.ijheatmasstransfer.2016.09.028
21.
Wang
,
C. C.
,
Chen
,
K. Y.
,
Liaw
,
J. S.
, and
Tseng
,
C. Y.
,
2015
, “
An Experimental Study of the Air-Side Performance of Fin-and-Tube Heat Exchangers Having Plain, Louver, and Semi-Dimple Vortex Generator Configuration
,”
Int. J. Heat Mass Transfer
,
80
, pp.
281
287
.10.1016/j.ijheatmasstransfer.2014.09.030
22.
Wang
,
C. C.
,
Chen
,
K. Y.
, and
Lin
,
Y. T.
,
2015
, “
Investigation of the Semi-Dimple Vortex Generator Applicable to Fin-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
88
, pp.
192
197
.
23.
Lin
,
Z. M.
,
Liu
,
C. P.
,
Lin
,
M.
, and
Wang
,
L. B.
,
2015
, “
Numerical Study of Flow and Heat Transfer Enhancement of Circular Tube Bank Fin Heat Exchanger With Curved Delta-Winglet Vortex Generators
,”
Appl. Therm. Eng.
,
88
, pp.
198
210
.10.1016/j.applthermaleng.2014.11.079
24.
Song
,
K. W.
,
Xi
,
Z. P.
,
Su
,
M.
,
Wang
,
L. C.
,
Wu
,
X.
, and
Wang
,
L. B.
,
2017
, “
Effect of Geometric Size of Curved Delta Winglet Vortex Generators and Tube Pitch on Heat Transfer Characteristics of Fin-Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
8
18
.10.1016/j.expthermflusci.2016.11.002
25.
Pesteei
,
S. M.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2005
, “
Experimental Study of the Effect of Winglet Location on Heat Transfer Enhancement and Pressure Drop in Fin-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1684
1696
.10.1016/j.applthermaleng.2004.10.013
26.
Arora
,
A.
,
Subbarao
,
P. M. V.
, and
Agarwal
,
R. S.
,
2015
, “
Numerical Optimization of Location of ‘Common Flow Up’ Delta Winglets for Inline Aligned Finned Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
82
, pp.
329
340
.10.1016/j.applthermaleng.2015.02.071
27.
Sarangi
,
S. K.
, and
Mishra
,
D. P.
,
2017
, “
Effect of Winglet Location on Heat Transfer of a Fin-and-Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
116
, pp.
528
540
.10.1016/j.applthermaleng.2017.01.106
28.
Tang
,
L. H.
,
Tan
,
S. C.
,
Gao
,
P. Z.
, and
Zeng
,
M.
,
2016
, “
Parameters Optimization of Fin-and-Tube Heat Exchanger With a Novel Vortex Generator Fin by Taguchi Method
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
369
381
.10.1080/01457632.2015.1052715
29.
Naik
,
H.
, and
Tiwari
,
S.
,
2018
, “
Effect of Winglet Location on Performance of Fin-Tube Heat Exchangers With Inline Tube Arrangement
,”
Int. J. Heat Mass Transfer
,
125
, pp.
248
261
.10.1016/j.ijheatmasstransfer.2018.04.071
30.
Välikangas
,
T.
, and
Karvinen
,
R.
,
2018
, “
Conjugated Heat Transfer Simulation of a Fin-and-Tube Heat Exchanger
,”
Heat Transfer Eng.
,
39
(
13–14
), pp.
1192
1200
.10.1080/01457632.2017.1363628
31.
Fan
,
J. F.
,
Ding
,
W. K.
,
Zhang
,
J. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, , “
A Performance Evaluation Plot of Enhanced Heat Transfer Techniques Oriented for Energy-Saving
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
33
44
.10.1016/j.ijheatmasstransfer.2008.07.006
32.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
New York
, pp.
149
150
.
33.
Kays
,
W. M.
, and
London
,
A. L.
,
1998
,
Compact Heat Exchangers
,
3rd ed.
,
McGraw-Hill
,
New York
, pp.
270
271
.
You do not currently have access to this content.