Abstract

In this work, numerical investigation of interaction of counter flow jet and hypersonic re-entry capsule flow has been carried out through modification of DsmcFoam solver. The DsmcFoam modification includes implementation of variable soft sphere (VSS) collision model for more accurate collision model, adjustment of nonuniform initial condition for faster convergence and nonuniform boundary condition, calculation of local Knudsen number in postprocessing for adaptive grid generation, and implementation of different gas species for multigas flow interaction simulations. Therefore, the modified DsmcFoam can be used for investigation of the effect of counter flow jet on the vehicle aerodynamics and aerothermodynamics. New validation test cases from Von Karman gas dynamics facility (VKF) tunnel data of Apollo and blunt-cone re-entry geometries are studied via DsmcFoam in which a suitable agreement of results is observed compared to experimental data and also MONACO code computations. Also, the influence of counter flow jet has been presented, i.e., changing of bow shock configuration and its distance from the vehicle. Consequently, it is observed that by increasing counter flow jet velocity or density, reduction of the drag coefficient and heat flux on the vehicle will occur. Furthermore, variation of the velocity or density of counter flow jet leads to different jet-flow interaction patterns which are presented evidently.

References

References
1.
Padilla
,
J. F.
, and
Boyd
,
I. D.
,
2006
, “
Assessment of Rarefied Hypersonic Aerodynamics Modeling and Wind Tunnel Data
,”
AIAA
Paper No. 2006-3390.
2.
Bird
,
G.
,
1963
, “
Approach to Translational Equilibrium in a Rigid Sphere Gas
,”
J. Phys. Fluids
,
6
(
10
), pp.
1518
1519
.10.1063/1.1710976
3.
Bird
,
G.
,
1970
, “
Direct Simulation and the Boltzmann Equation
,”
J. Phys. Fluids
,
13
(
11
), pp.
2676
2681
.10.1063/1.1692849
4.
Moss
,
J. N.
,
Dogra
,
V.
,
Price
,
J.
, and
Hash
,
D.
,
1995
, “
Comparison of DSMC and Experimental Results for Hypersonic External Flows
,”
30th Thermophysics Conference
,
San Diego, CA
,
June 19–22
.10.2514/6.1995-2028
5.
Wilmoth
,
R. G.
,
Mitcheltree
,
R. A.
, and
Moss
,
J. N.
,
1999
, “
Low-Density Aerodynamics of the Stardust Sample Return Capsule
,”
J. Spacecr. Rockets
,
36
(
3
), pp.
436
441
.10.2514/2.3464
6.
Roy
,
C. J.
,
Bartel
,
T.
,
Gallis
,
M.
, and
Payne
,
J.
,
2001
, “
DSMC and Navier-Stokes Predictions for Hypersonic Laminar Interacting Flows
,”
J. AIAA
,
1030
, p.
2001
.10.2514/6.2001-1030
7.
Fujita
,
K.
,
Inatani
,
Y.
, and
Hiraki
,
K.
,
2004
, “
Attitude Stability of Blunt-Body Capsules in Hypersonic Rarefied Regime
,”
J. Spacecraft Rockets.
,
41
(
6
), pp.
925
931
.10.2514/1.3588
8.
Moss
,
J. N.
,
2007
, “
Direct Simulation Monte Carlo Simulations of Ballute Aerothermodynamics Under Hypersonic Rarefied Conditions
,”
J. Spacecr. Rockets
,
44
(
2
), pp.
289
298
.10.2514/1.22706
9.
Sampaio
,
P. A.
, and
Santos
,
W. F.
,
2010
, “
Computational Analysis of the Aerodynamic Heating and Drag of a Reentry Brazilian Satellite
,”
Sixth National Congress of Mechanical Engineering
,
Campina Grande, PB, Brazil
,
Aug. 18–21
.http://mtc- m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19@ 80/2010/06.04.12.10/doc/computational.pdf
10.
Ivanov
,
M. S.
,
2011
, “
Statistical Simulation of Reentry Capsule Aerodynamics in Hypersonic Near-Continuum Flows
,” Technical Report.
11.
Ozawa
,
T.
,
Suzuki
,
T.
,
Takayanagi
,
H.
, and
Fujita
,
K.
,
2011
, “
Analysis of Non-Continuum Hypersonic Flows for the Hayabusa Reentry
,”
J. AIAA
,
3311
, pp.
27
30
.10.2514/6.2011-3311
12.
Zakeri
,
R.
,
Kamali-Moghadam
,
R.
, and
Mani
,
M.
,
2016
, “
A New Approach for Chemical Reaction Simulation of Rarefied Gas Flow by DSMC Method
,”
J. Comput. Fluids
,
140
, pp.
111
121
.10.1016/j.compfluid.2016.08.017
13.
Zakeri
,
R.
,
Kamali-Moghadam
,
R.
, and
Mani
,
M.
,
2017
, “
New Chemical-DSMC Method in Numerical Simulation of Axisymmetric Rarefied Reactive Flow
,”
J. Phys. Fluids
,
29
(
4
), p.
047105
.10.1063/1.4979793
14.
Scanlon
,
T.
,
Roohi
,
E.
,
Whitea
,
C.
,
Darbandib
,
M.
, and
Reesea
,
J. M.
,
2010
, “
An Open Source, Parallel DSMC Code for Rarefied Gas Flows in Arbitrary Geometries
,”
J. Comput. Fluids.
,
39
(
10
), pp.
2078
2089
.10.1016/j.compfluid.2010.07.014
15.
Ahmad
,
A.
,
T. Scanlon
,
T.
, and
Reese
,
J.
,
2011
, “
Capturing Shock Waves Using an Open-Source, Direct Simulation Monte Carlo (DSMC) Code
,”
Fourth European Conference for Aero-Space Sciences (EUCASS)
,
Saint Petersburg, Russia
, Paper No. 2011-07-04.https://pureportal.strath.ac.uk/en/publications/capturing-shock-waves-using-an-open-source-direct-simulation-mont
16.
Scanlon
,
T. J.
,
White
,
C.
,
Borg
,
M. K.
,
Palharini
,
R. C.
,
Farbar
,
E.
,
Boyd
,
I. D.
,
Reese
,
J. M.
, and
Brown
,
R. E.
,
2015
, “
Open-Source Direct Simulation Monte Carlo Chemistry Modeling for Hypersonic Flows
,”
J. AIAA
,
53
(6), p.
370
.10.2514/1.J053370
17.
Scanlon
,
T.
,
Cassineli
,
P. R.
,
White
,
C.
,
Espinoza
,
D.
, and
Casseau
,
V.
,
2015
, “
Simulations of Rarefied and Continuum Hypersonic Flow Over Re-Entry Object
,”
Eighth European Symposium on Aerothermodynamics for Space Vehicles
,
Lisbon, Portugal
,
Mar. 2–6
, Paper No. 2015-03-02–2015-03-06.https://strathprints.strath.ac.uk/51961/
18.
Glass
,
C. E.
, and
LeBeau
,
G. J.
,
1997
, “
Numerical Study of a Continuum Sonic Jet Interacting With a Rarefied Flow
,”
J. AIAA
,
97
, p.
2536
.10.2514/6.1997-2536
19.
Gimelshein
,
S.
,
Alexeenko
,
A.
, and
Levin
,
D.
,
2002
, “
Modeling of the Interaction of a Side Jet With a Rarefied Atmosphere
,”
J. Spacecr. Rockets
,
39
(
2
), pp.
168
176
.10.2514/2.3814
20.
Chavis
,
Z.
, and
Wilmoth
,
R. G.
,
2005
, “
Plume Modeling and Application to Mars 2001 Odyssey Aerobraking
,”
J. Spacecr. Rockets
,
42
(
3
), pp.
450
456
.10.2514/1.15171
21.
Marichalar
,
J.
,
Lumpkin
,
F.
, and
Boyles
,
K.
,
2012
, “
Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry
,”
NASA
,
Washington, DC
, Report No.
20120007843
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120007843.pdf
22.
Bird
,
G. A.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flow
,
2nd ed.
,
Clarendon Press
,
Oxford, UK
.
23.
Koura
,
K.
, and
Matsumoto
,
H.
,
1992
, “
Variable Soft Sphere Molecular Model for Air Species
,”
Phys. Fluids A
,
4
(
5
), pp.
1083
1085
.10.1063/1.858262
24.
Morokoff
,
W.
, and
Kersch
,
A.
,
1998
, “
A Comparison of Scattering Angle Models
,”
Comput. Math. Appl.
,
35
(
1
), pp.
155
164
.10.1016/S0898-1221(97)00265-4
25.
Borgnakke
,
C.
, and
Larsen
,
P. S.
,
1975
, “
Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture
,”
J. Comput. Phys.
,
18
(
4
), pp.
405
420
.10.1016/0021-9991(75)90094-7
26.
Dorsman
,
R.
, and
Kleijn
,
C. R.
,
2007
, “
Numerical Simulations of Rarefied Gas Flows in Thin Film Processes
,” Doctoral thesis,
TU, Delft
,
The Netherlands
.
27.
Boyd
,
I. D.
,
2014
, “
Computation of Hypersonic Flows Using the Direct Simulation Monte Carlo Method
,”
J. Spacecr. Rockets
,
52
(
1
), pp.
38
53
.10.2514/1.A32767
You do not currently have access to this content.