Abstract

This paper is carried out on the computer simulation of breast cancer treated using a high intensity focused ultrasound (HIFU). The mathematical models consist of the pressure acoustics equation, bioheat equation, heat transfer in a blood vessel, momentum equations in a blood vessel, and mechanical deformation equation. In the numerical simulation, these mathematical models are solved by using an axisymmetric finite element method (FEM) with time-dependent, thermal and acoustic properties to describe the temperature distribution and the total displacement in tissue. The comparison of the simulated results in the model with two sizes of the cancer tumor and two frequencies of ultrasound are also considered in order to approach realistic tissue modeling. The results show that the breast cancer model with deformation, which is the more accurate way to simulate the physical characteristics of therapeutic breast cancer compared to the literature results, hence leads to more useful in the medical approach and this study was conducted to prevent errors caused by inaccurate focal points.

References

References
1.
Bhowmik
,
A.
,
Repaka
,
R.
,
Mishra
,
S. C.
, and
Mitra
,
K.
,
2015
, “
Thermal Assessment of Ablation Limit of Subsurface Tumor During Focused Ultrasound and Laser Heating
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
1
), p.
011012
.10.1115/1.4030731
2.
Cancer Fact Sheets
,
2012
, “
GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012
,” Cancer Today - IARC, Lyon, France, accessed Apr. 4, 2014, http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
3.
Kennedy
,
J. E.
,
2005
, “
High-Intensity Focused Ultrasound in the Treatment of Solid Tumours
,”
Nat. Rev. Cancer
,
5
(
4
), pp.
321
327
.10.1038/nrc1591
4.
Wu
,
F.
,
Wang
,
Z.-B.
,
Chen
,
W.-Z.
,
Zou
,
J.-Z.
,
Bai
,
J.
,
Zhu
,
H.
,
Li
,
K.-Q.
,
Xie
,
F.-L.
,
Jin
,
C.-B.
,
Su
,
H.-B.
, and
Gao
,
G.-W.
,
2004
, “
Extracorporeal Focused Ultrasound Surgery for Treatment of Human Solid Carcinomas: Early Chinese Clinical Experience
,”
Ultrasound Med. Biol.
,
30
(
2
), pp.
245
260
.10.1016/j.ultrasmedbio.2003.10.010
5.
Hadjiargyrou
,
M.
,
McLeod
,
K.
,
Ryaby
,
J. P.
, and
Rubin
,
C.
,
1998
, “
Enhancement of Fracture Healing by Low Intensity Ultrasound
,”
Clin. Orthop. Relat. Res.
,
355
, pp.
S216
S229
.https://www.ncbi.nlm.nih.gov/pubmed/9917641
6.
Postema
,
M.
, and
Gilja
,
O. H.
,
2007
, “
Ultrasound-Directed Drug Delivery
,”
Curr. Pharm. Biotechnol.
,
8
(
6
), pp.
355
361
.10.2174/138920107783018453
7.
Tachibana
,
K.
, and
Tachibana
,
S.
,
2001
, “
The Use of Ultrasound for Drug Delivery
,”
Echocardiography
,
18
(
4
), pp.
323
328
.10.1046/j.1540-8175.2001.00323.x
8.
Hynynen
,
K.
, and
Davis
,
K. L.
,
1993
, “
Small Cylindrical Ultrasound Sources for Induction of Hyperthermia Via Body Cavities or Interstitial Implants
,”
Int. J. Hyp.
,
9
(
2
), pp.
263
274
.10.3109/02656739309022539
9.
Hurwitz
,
M. D.
,
Kaplan
,
I. D.
,
Svensson
,
G. K.
,
Hansen
,
M. S.
, and
Hynynen
,
K.
,
2001
, “
Feasibility and Patient Tolerance of a Novel Transrectal Ultrasound Hyperthermia System for Treatment of Prostate Cancer
,”
Int. J. Hyp.
,
17
(
1
), pp.
31
37
.10.1080/02656730150201570
10.
Hynynen
,
K.
, and
Deyoung
,
D.
,
1988
, “
Temperature Elevation at Muscle-Bone Interface During Scanned, Focused Ultrasound Hyperthermia
,”
Int. J. Hyp.
,
4
(
3
), pp.
267
279
.10.3109/02656738809051103
11.
Lawrie
,
A.
,
Brisken
,
A.
,
Francis
,
A.
,
Tayler
,
D.
,
Chamberlain
,
J.
,
Crossman
,
D.
,
Cumberland
,
D.
, and
Newman
,
C.
,
1999
, “
Ultrasound Enhances Reporter Gene Expression After Transfection of Vascular Cells In Vitro
,”
Circulation
,
99
(
20
), pp.
2617
2620
.10.1161/01.CIR.99.20.2617
12.
Ter Haar
,
G.
,
2012
, “
Ultrasound Mediated Drug Delivery, a 21st Century Phoenix
,”
Int. J. Hyperthermia, Official J. Eur. Soc. Hyperthermic Oncol., North Am. Hyperthermia Group
,
28
(
4
), p.
279
.10.3109/02656736.2012.678029
13.
Seufi
,
A. M.
,
Ibrahim
,
S. S.
,
Elmaghraby
,
T. K.
, and
Hafez
,
E. E.
,
2009
, “
Preventive Effect of the Flavonoid, Quercetin, on Hepatic Cancer in Rats Via Oxidant/Antioxidant Activity: Molecular and Histological Evidences
,”
J. Exp. Clin. Cancer Res.
,
28
(
1
), p.
80
.10.1186/1756-9966-28-80
14.
Yang
,
D.
,
Converse
,
M. C.
,
Mahvi
,
D. M.
, and
Webster
,
J. G.
,
2007
, “
Measurement and Analysis of Tissue Temperature During Microwave Liver Ablation
,”
IEEE Trans. Biomed. Eng.
,
54
(
1
), pp.
150
155
.10.1109/TBME.2006.884647
15.
Montienthong
,
P.
,
Rattanadecho
,
P.
, and
Klinbun
,
W.
,
2017
, “
Effect of Electromagnetic Field on Distribution of Temperature, Velocity and Concentration During Saturated Flow in Porous Media Based on Local Thermal Non-Equilibrium Models (Influent of Input Power and Input Velocity)
,”
Int. J. Heat Mass Transfer
,
106
, pp.
720
730
.10.1016/j.ijheatmasstransfer.2016.09.059
16.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2012
, “
Numerical Analysis of Specific Absorption Rate and Heat Transfer in Human Head Subjected to Mobile Phone Radiation: Effects of User Age and Radiated Power
,”
ASME J. Heat Transfer
,
134
(
12
), p.
121101
.10.1115/1.4006595
17.
Klinbun
,
W.
, and
Rattanadecho
,
P.
,
2012
, “
Numerical Model of Microwave Driven Convection in Multi-Layer Porous Pack Bed Using a Rectangular
,”
ASME J. Heat Transfer
,
134
(
4
), p.
042605
.10.1115/1.4005254
18.
Wessapan
,
T.
, and
Rattanadecho
,
P.
,
2012
, “
Specific Absorption Rate and Temperature Increase in Human Eye Subjected to Electromagnetic Fields at 900 MHz
,”
ASME J. Heat Transfer
,
134
(
9
), p.
091101
.10.1115/1.4006243
19.
Wessapan
,
T.
,
Srisawatdhisukul
,
S.
, and
Rattanadecho
,
P.
,
2011
, “
Numerical Analysis of Specific Absorption Rate and Heat Transfer in the Human Body Exposed to Leakage Microwave Power at 915 MHz and 2,450 MHz
,”
ASME J. Heat Transfer
,
133
(
5
), p.
051101
.10.1115/1.4003115
20.
Wongchadakul
,
P.
,
Rattanadecho
,
P.
, and
Wessapan
,
T.
,
2018
, “
Implementation of a Thermomechanical Model to Simulate Laser Heating in Shrinkage Tissue (Effects of Wavelength, Laser Irradiation Intensity, and Irradiation Beam Area)
,”
Int. J. Therm. Sci.
,
134
, pp.
321
336
.10.1016/j.ijthermalsci.2018.08.008
21.
Manenti
,
G.
,
Scarano
,
A. L.
,
Pistolese
,
C. A.
,
Perretta
,
T.
,
Bonanno
,
E.
,
Orlandi
,
A.
, and
Simonetti
,
G.
,
2013
, “
Subclinical Breast Cancer: Minimally Invasive Approaches. Our Experience With Percutaneous Radiofrequency Ablation vs. Cryotherapy
,”
Breast Care (Basel).
,
8
(
5
), pp.
356
360
.10.1159/000355707
22.
Quaranta
,
V.
,
Manenti
,
G.
,
Bolacchi
,
F.
,
Cossu
,
E.
,
Pistolese
,
C. A.
,
Buonomo
,
O. C.
,
Carotenuto
,
L.
,
Piconi
,
C.
, and
Simonetti
,
G.
,
2007
, “
FEM Analysis of RF Breast Ablation: Multiprobe Versus Cool-Tip Electrode
,”
Anticancer Res.
,
27
, pp.
775
784
.
23.
Hipp
,
E.
,
Partanen
,
A.
,
Karczmar
,
G. S.
, and
Fan
,
X.
,
2012
, “
Safety Limitations of MR-HIFU Treatment Near Interfaces: A Phantom Validation
,”
J. Appl. Clin. Med. Phys.
,
13
(
2
), p.
3739
.10.1120/jacmp.v13i2.3739
24.
Yang
,
R.
,
Reilly
,
C. R.
,
Rescorla
,
F. J.
,
Sanghvi
,
N. T.
,
Fry
,
F. J.
,
Franklin
,
T. D.
, and
Grosfeld
,
J. L.
,
1992
, “
Effects of High-Intensity Focused Ultrasound in the Treatment of Experimental Neuroblastoma
,”
J. Pediatr. Surg.
,
27
(
2
), pp.
246
251
.10.1016/0022-3468(92)90321-W
25.
Haar
,
G. T.
, and
Coussios
,
C.
,
2007
, “
High Intensity Focused Ultrasound: Physical Principles and Devices
,”
Int. J. Hyperthermia.
,
23
(
2
), pp.
89
104
.10.1080/02656730601186138
26.
Dubinsky
,
T. J.
,
Cuevas
,
C.
,
Dighe
,
M. K.
,
Kolokythas
,
O.
, and
Hwang
,
J. H.
,
2008
, “
High-Intensity Focused Ultrasound: Current Potential and Oncologic Applications
,”
Am. J. Roentgenol.
,
190
(
1
), pp.
191
199
.10.2214/AJR.07.2671
27.
Huang
,
J.
,
Holt
,
R. G.
,
Cleveland
,
R. O.
, and
Roy
,
R. A.
,
2004
, “
Experimental Validation of a Tractable Numerical Model for Focused Ultrasound Heating in Flow-Through Tissue Phantoms
,”
J. Acoust. Soc. Am.
,
116
(
4 Pt. 1
), pp.
2451
2458
.10.1121/1.1787124
28.
Wulff
,
W.
,
1974
, “
The Energy Conservation Equation for Living Tissue
,”
IEEE Trans. Biomed. Eng.
,
21
(
6
), pp.
494
495
.10.1109/TBME.1974.324342
29.
Klinger
,
H. G.
,
1974
, “
Heat Transfer in Perfused Biological Tissue—I: General Theory
,”
Bull. Math. Biol.
,
36
(
4
), pp.
403
415
.10.1016/S0092-8240(74)80038-8
30.
Chen
,
M. M.
, and
Holmes
,
K. R.
,
1980
, “
Microvascular Contributions in Tissue Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
335
, pp.
137
150
.10.1111/j.1749-6632.1980.tb50742.x
31.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
32.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Phys.
,
85
, pp.
5
34
.10.1152/jappl.1998.85.1.5
33.
Saladin
,
K. S.
,
2011
,
Anatomy and Physiology: The Unity of Form and Function
,
6th ed.
,
McGraw-Hill
,
New York
, pp.
678
749
.
34.
White
,
P. J.
,
Clement
,
G. T.
, and
Hynynen
,
K.
,
2006
, “
Local Frequency Dependence in Transcranial Ultrasound Transmission
,”
Phys. Med. Biol.
,
51
(
9
), pp.
2293
2305
.10.1088/0031-9155/51/9/013
35.
Thanou
,
M.
, and
Gedroyc
,
W.
,
2013
, “
MRI-Guided Focused Ultrasound as a New Method of Drug Delivery
,”
J. Drug Deliv.
,
2013
, p.
616197
.10.1155/2013/616197
36.
Hill
,
C. R.
,
1994
, “
Optimum Acoustic Frequency for Focused Ultrasound Surgery
,”
Ultrasound Med. Biol.
,
20
(
3
), pp.
271
277
.10.1016/0301-5629(94)90067-1
37.
Zderic
,
V.
,
Keshavarzi
,
A.
,
Andrew
,
M. A.
,
Vaezy
,
S.
, and
Martin
,
R. W.
,
2004
, “
Attenuation of Porcine Tissues In Vivo After High-Intensity Ultrasound Treatment
,”
Ultrasound Med. Biol.
,
30
(
1
), pp.
61
66
.10.1016/j.ultrasmedbio.2003.09.003
38.
Daftari
,
I.
,
Barash
,
D.
,
Lin
,
S.
, and
O'Brien
,
J.
,
2001
, “
Use of High-Frequency Ultrasound Imaging to Improve Delineation of Anterior Uveal Melanoma for Proton Irradiation
,”
Phys. Med. Biol.
,
46
(
2
), pp.
579
590
.10.1088/0031-9155/46/2/322
39.
Chen
,
L.
,
Dyson
,
M.
,
Rymer
,
J.
,
Bolton
,
P.
, and
Young
,
S.
,
2001
, “
The Use of High-Frequency Diagnostic Ultrasound to Investigate the Effect of Hormone Replacement Therapy on Skin Thickness
,”
Skin Res. Technol.
,
7
(
2
), pp.
95
97
.10.1034/j.1600-0846.2001.70207.x
You do not currently have access to this content.