The statistical multiphase approach (MPA) proposed in the first part of this work to evaluate radiative properties of composite materials is applied to porous structures of opaque material and biological tissues. Radiative thermal conductivity is calculated for the bundle of circular rods, packed pebble beds, and metal foams. The results generally agree with the reference calculations by other methods. The small difference can be explained by different approaches to scattering and assumptions about the temperature distribution. Attenuation of light in skin tissues is calculated by the diffusion approximation. The attenuation coefficient generally agrees with the reference Monte Carlo simulation (MC). The difference observed at certain combination of parameters can be due to the assumption of regular arrangement of vessels at the MC simulation.

References

1.
Gusarov
,
A. V.
, “
Statistical Approach to Radiative Transfer in the Heterogeneous Media of Thin-Wall Morphology—I: Theory
,”
ASME J. Heat Transfer
,
140
(11), p. 112701.
2.
Randrianalisoa
,
J.
,
Haussener
,
S.
,
Baillis
,
D.
, and
Lipinski
,
W.
,
2017
, “
Radiative Characterization of Random Fibrous Media With Long Cylindrical Fibers: Comparison of Single- and Multi-RTE Approaches
,”
J. Quant. Spectrosc. Radiat. Transfer
,
202
, pp.
220
232
.
3.
Asakuma
,
Y.
,
Honda
,
I.
, and
Yamamoto
,
T.
,
2017
, “
Numerical Analysis of Effective Thermal Conductivity With Thermal Conduction and Radiation in Packed Beds
,”
Int. J. Heat Mass Transfer
,
114
, pp.
402
406
.
4.
Gusarov
,
A. V.
, and
Kruth
,
J.-P.
,
2005
, “
Modelling of Radiation Transfer in Metallic Powders at Laser Treatment
,”
Int. J. Heat Mass Transfer
,
48
(
16
), pp.
3423
3434
.
5.
Rombouts
,
M.
,
Froyen
,
L.
,
Gusarov
,
A. V.
,
Bentefour
,
E. H.
, and
Glorieux
,
C.
,
2005
, “
Light Extinction in Metallic Powder Beds: Correlation With Powder Structure
,”
J. Appl. Phys.
,
98
(
1
), p.
013533
.
6.
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Andreozzi
,
A.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2015
, “
Monte Carlo Determination of Radiative Properties of Metal Foams: Comparison Between Idealized and Real Cell Structures
,”
Int. J. Therm. Sci.
,
87
, pp.
94
102
.
7.
Singh
,
B. P.
, and
Kaviany
,
M.
,
1992
, “
Modelling Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
35
(
6
), pp.
1397
1405
.
8.
Brewster
,
M. Q.
,
2004
, “
Volume Scattering of Radiation in Packed Beds of Large, Opaque Spheres
,”
ASME J. Heat Transfer
,
126
(
6
), pp.
1048
1050
.
9.
Yang
,
L.
,
Chen
,
W.
,
Luo
,
L.
, and
Zhao
,
X.
,
2014
, “
Calculation of Radiation Heat Transfer View Factors Among Fuel Rod Bundles Based on CFD Method
,”
Ann. Nucl. Energy
,
71
, pp.
462
466
.
10.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
11.
Cunsolo
,
S.
,
Coquard
,
R.
,
Baillis
,
D.
, and
Bianco
,
N.
,
2016
, “
Radiative Properties Modeling of Open Cell Solid Foam: Review and New Analytical Law
,”
Int. J. Therm. Sci.
,
104
, pp.
122
134
.
12.
Cunsolo
,
S.
,
Coquard
,
R.
,
Baillis
,
D.
,
Chiu
,
W. K. S.
, and
Bianco
,
N.
,
2017
, “
Radiative Properties of Irregular Open Cell Solid Foams
,”
Int. J. Therm. Sci.
,
117
, pp.
77
89
.
13.
Li
,
J. E.
, and
Wang
,
B.
,
2014
, “
Equivalent Thermal Conductivity of Open-Cell Ceramic Foams at High Temperatures
,”
Int. J. Thermophys.
,
35
(
1
), pp.
105
122
.
14.
Contento
,
G.
,
Oliviero
,
M.
,
Bianco
,
N.
, and
Naso
,
V.
,
2014
, “
Prediction of Radiative Heat Transfer in Metallic Foams
,”
Int. J. Therm. Sci.
,
76
, pp.
147
154
.
15.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Thermal Radiation in Ultralight Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
2927
2939
.
16.
Rousseau
,
P. G.
,
du Toit
,
C. G.
,
van Antwerpen
,
W.
, and
van Antwerpen
,
H. J.
,
2014
, “
Separate Effects Tests to Determine the Effective Thermal Conductivity in the PBMR HTTU Test Facility
,”
Nucl. Eng. Des.
,
271
, pp.
444
458
.
17.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2017
, “
Modelling Effective Thermal Conductivity of Thermal Radiation for Nuclear Packed Pebble Beds
,”
ASME J. Heat Transfer
,
140
(
4
), p.
042701
.
18.
Humeau-Heurtier
,
A.
,
Mahé
,
G.
,
Chapeau-Blondeau
,
F.
,
Rousseau
,
D.
, and
Abraham
,
P.
,
2012
, “
Study of Time Reversibility/Irreversibility of Cardiovascular Data: Theoretical Results and Application to Laser Doppler Flowmetry and Heart Rate Variability Signals
,”
Phys. Med. Biol.
,
57
(
13
), pp.
4335
4352
.
19.
Milej
,
D.
,
Gerega
,
A.
,
Żołek
,
N.
,
Weigl
,
W.
,
Kacprzak
,
M.
,
Sawosz
,
P.
,
Mączewska
,
J.
,
Fronczewska
,
K.
,
Mayzner-Zawadzka
,
E.
,
Królicki
,
L.
,
Maniewski
,
R.
, and
Liebert
,
A.
,
2012
, “
Time-Resolved Detection of Fluorescent Light During Inflow of ICG to the Brain—A Methodological Study
,”
Phys. Med. Biol.
,
57
(
20
), pp.
6725
6742
.
20.
Valentine
,
R. M.
,
Wood
,
K.
,
Brown
,
C. T. A.
,
Ibbotson
,
S. H.
, and
Moseley
,
H.
,
2012
, “
Monte Carlo Simulations for Optimal Light Delivery in Photodynamic Therapy of Non-Melanoma Skin Cancer
,”
Phys. Med. Biol.
,
57
(
20
), pp.
6327
6346
.
21.
van Gemert
,
M. G. C.
,
Nelson
,
J. S.
,
Milner
,
T. E.
,
Smithies
,
D. J.
,
Verkruysse
,
W.
,
de Boer
,
J. F.
,
Lucassen
,
G. W.
,
Goodman
,
D. M.
,
Tanenbaum
,
B. S.
,
Norvang
,
L. T.
, and
Svaasand
,
L. O.
,
1997
, “
Non-Invasive Determination of Port Wine Stain Anatomy and Physiology for Optimal Laser Treatment Strategies
,”
Phys. Med. Biol.
,
42
(
5
), pp.
937
950
.
22.
Verkruysse
,
W.
,
Lucassen
,
G. W.
,
de Boer
,
J. F.
,
Smithies
,
D. J.
,
Nelson
,
J. S.
, and
van Gemert
,
M. G. C.
,
1997
, “
Modeling Light Distributions of Homogeneous Versus Discrete Absorbers in Light Irradiated Turbid Media
,”
Phys. Med. Biol.
,
42
(
1
), pp.
51
65
.
23.
Mottin
,
S.
,
Panasenko
,
G.
, and
Ganesh
,
S. S.
,
2010
, “
Multiscale Modeling of Light Absorption in Tissues: Limitations of Classical Homogenization Approach
,”
PloS ONE
,
5
(
12
), p.
e14350
.
You do not currently have access to this content.