The problem of boundary layer flow and heat transfer of magnetohydrodynamic (MHD) nanofluids which consist of Fe3O4, Cu, Al2O3, and TiO2 nanoparticles and water as the base fluid past a bidirectional exponentially permeable stretching/shrinking sheet is studied numerically. The mathematical model of the nanofluid incorporates the effect of viscous dissipation in the energy equation. By employing a suitable similarity transformation, the conservative equations for mass, momentum, and energy are transformed into the ordinary differential equations. These equations are then numerically solved with the utilization of bvp4c function in matlab. The effects of the suction parameter, magnetic parameter, nanoparticle volume fraction parameter, Eckert number, Prandtl number, and temperature exponent parameter to the reduced skin friction coefficient as well as the local Nusselt number are graphically presented. Cu is found to be prominently good in the thermal conductivity. Nevertheless, higher concentration of nanoparticles leads to the deterioration of heat transfer rate. The present result negates the previous literature on thermal conductivity enhancement with the implementation of nanofluid. Stability analysis is conducted since dual solutions exist in this study, and conclusively, the first solution is found to be stable.

References

References
1.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.
2.
Fang
,
T.
,
2008
, “
Boundary Layer Flow Over a Shrinking Sheet With Power-Law Velocity
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5838
5843
.
3.
Nadeem
,
S.
, and
Haq
,
R. U.
,
2015
, “
MHD Boundary Layer Flow of a Nanofluid Passed Through a Porous Shrinking Sheet With Thermal Radiation
,”
J. Aerosp. Eng.
,
28
(2), p.
4014061
.
4.
Mondal
,
S.
,
Haroun
,
N. A. H.
, and
Sibanda
,
P.
,
2015
, “
The Effects of Thermal Radiation on an Unsteady MHD Axisymmetric Stagnation-Point Flow Over a Shrinking Sheet in Presence of Temperature Dependent Thermal Conductivity With Navier Slip
,”
PLoS One
,
10
(9), p. e0138355.
5.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface
,”
J. Phys. D: Appl. Phys.
,
32
(
5
), pp.
577
585
.
6.
Hayat
,
T.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2014
, “
MHD Three-Dimensional Flow by an Exponentially Stretching Surface With Convective Boundary Condition
,”
J. Aerosp. Eng.
,
27
(4), pp.
1
8
.
7.
Khan
,
J. A.
,
Mustafa
,
M.
,
Hayat
,
T.
,
Sheikholeslami
,
M.
, and
Alsaedi
A.
,
2015
, “
Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy
,”
PLoS One
,
10
(3), p. e0116603.
8.
Ur Rehman
,
F.
, and
Nadeem
,
S.
,
2018
, “
Heat Transfer Analysis for Three-Dimensional Stagnation Point Flow of Water-Based Nanofluid Over an Exponentially Stretching Surface
,”
ASME J. Heat Transfer
,
140
(5), p.
052401
.
9.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol. 66, D. A. Siginer and H. P. Wang, eds., American Society of Mechanical Engineers, New York, pp. 99–105.
10.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
, pp.
10
25
.
11.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
12.
Wong
,
K. V.
, and
Leon
,
O. D.
,
2010
, “
Applications of Nanofluids: Current and Future
,”
Adv. Mech. Eng.
,
2
, pp.
1
11
.
13.
Ding
,
Y.
,
Chen
,
H.
,
Wang
,
L.
,
Yang
,
C. Y.
,
He
,
Y.
,
Yang
,
W.
,
Lee
,
W. P.
,
Zhang
,
L.
, and
Huo
,
R.
,
2007
, “
Heat Transfer Intensification Using Nanofluids
,”
KONA Powder Part. J.
,
25
, pp.
23
38
.
14.
Ma
,
J.
,
Xu
,
Y.
,
Li
,
W.
,
Zhao
,
J.
,
Zhang
,
S.
, and
Basov
,
S.
,
2013
, “
Experimental Investigation Into the Forced Convective Heat Transfer of Aqueous Fe3O4 Nanofluids Under Transition Region
,”
J. Nanopart.
,
2013
, pp.
1
5
.
15.
Li
,
C. H.
, and
Peterson
,
G. P.
,
2010
, “
Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)
,”
Adv. Mech. Eng.
,
2
, pp.
1
10
.
16.
Kouloulias
,
K.
,
Sergis
,
A.
, and
Hardalupas
,
Y.
,
2016
, “
Sedimentation in Nanofluids During a Natural Convection Experiment
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1193
1203
.
17.
Myers
,
T. G.
,
Ribera
,
H.
, and
Cregan
,
V.
,
2017
, “
Does Mathematics Contribute to the Nanofluid Debate?
,”
Int. J. Heat Mass Transfer
,
111
, pp.
279
288
.
18.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
,
4th ed.
,
Springer
,
New York
.
19.
Minkowycz
,
W. J.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2013
,
Nanoparticle Heat Transfer and Fluid Flows
,
CRC Press/Taylor & Fracis Group
,
New York
.
20.
Shenoy
,
A.
,
Sheremet
,
M.
, and
Pop
,
I.
,
2016
,
Convective Flow and Heat Transfer From Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids
,
CRC Press/Taylor & Francis Group
,
New York
.
21.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L. W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Paola
,
R. D.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J. H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Vaerenbergh
,
S. V.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W. H.
,
Zhao
,
X. Z.
, and
Zhou
,
S. Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
22.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.
23.
Fan
,
J.
, and
Wang
,
L.
,
2011
, “
Review of Heat Conduction in Nanofluids
,”
ASME J. Heat Transfer
,
133
(4), p.
040801
.
24.
Mahian
,
O.
,
Kianifar
,
A.
,
Kalogirou
,
S. A.
,
Pop
,
I.
, and
Wongwises
,
S.
,
2013
, “
A Review of the Applications of Nanofluids in Solar Energy
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
582
594
.
25.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Nanofluid Convective Heat Transfer Using Semi Analytical and Numerical Approaches: A Review
,”
J. Taiwan Inst. Chem. Eng.
,
65
, pp.
43
77
.
26.
Noreen
,
S.
,
2016
, “
Effects of Joule Heating and Convective Boundary Conditions on Magnetohydrodynamic Peristaltic Flow of Couple-Stress Fluid
,”
ASME J. Heat Transfer
,
138
(
9
), p.
094502
.
27.
Davidson
,
P. A.
,
2011
,
An Introduction to Magnetohydrodynamics
,
Cambridge University Press
,
Cambridge, UK
.
28.
Kim
,
S. D.
,
Lee
,
E.
, and
Choi
,
W.
,
2017
, “
Newton's Algorithm for Magnetohydrodynamic Equations With the Initial Guess From Stokes-Like Problem
,”
J. Comput. Appl. Math.
,
309
, pp.
1
10
.
29.
Motozawa
,
M.
,
Chang
,
J.
,
Sawada
,
T.
, and
Kawaguchi
,
Y.
,
2010
, “
Effect of Magnetic Field on Heat Transfer in Rectangular Duct Flow of a Magnetic Fluid
,”
Phys. Procedia
,
9
, pp.
190
193
.
30.
Kishore
,
P. M.
,
Rajesh
,
V.
, and
Varma
,
S. V. K.
,
2010
, “
Effects of Heat Transfer and Viscous Dissipation on MHD Free Convection Flow Past an Exponentially Accelerated Vertical Plate With Variable Temperature
,”
J. Nav. Archit. Mar. Eng.
,
7
(2), pp.
101
110
.
31.
Mabood
,
F.
,
Khan
,
W. A.
, and
Ismail
,
A. I. M.
,
2015
, “
MHD Boundary Layer Flow and Heat Transfer of Nanofluids Over a Nonlinear Stretching Sheet: A Numerical Study
,”
J. Magn. Magn. Mater
,
374
, pp.
569
576
.
32.
Khader
,
M. M.
, and
Megahed
,
A. M.
,
2014
, “
Differential Transformation Method for the Flow and Heat Transfer Due to a Permeable Stretching Surface Embedded in a Porous Medium With a Second Order Slip and Viscous Dissipation
,”
ASME J. Heat Transfer
,
136
(
7
), p.
072602
.
33.
Abbasbandy
,
S.
,
Magyari
,
E.
, and
Shivanian
,
E.
,
2009
, “
The Homotopy Analysis Method for Multiple Solutions of Nonlinear Boundary Value Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
9–10
), pp.
3530
3536
.
34.
Abbasbandy
,
S.
,
Shivanian
,
E.
,
Vajravelu
,
K.
, and
Kumar
,
S.
,
2017
, “
A New Approximate Analytical Technique for Dual Solutions of Nonlinear Differential Equations Arising in Mixed Convection Heat Transfer in a Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
2
), pp.
486
503
.
35.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2010
, “
Prediction of Multiplicity of Solutions of Nonlinear Boundary Value Problems: Novel Application of Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
12
), pp.
3830
3846
.
36.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2011
, “
Predictor Homotopy Analysis Method and Its Application to Some Nonlinear Problems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
6
), pp.
2456
2468
.
37.
Abbasbandy
,
S.
, and
Shivanian
,
E.
,
2011
, “
Multiple Solutions of Mixed Convection in a Porous Medium on Semi-Infinite Interval Using Pseudo-Spectral Collocation Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
7
), pp.
2745
2752
.
38.
Vosoughi
,
H.
,
Shivanian
,
E.
, and
Abbasbandy
,
S.
,
2012
, “
Unique and Multiple PHAM Series Solutions of a Class of Nonlinear Reactive Transport Model
,”
Numer. Algorithms
,
61
(
3
), pp.
515
524
.
39.
Ahmad Soltani
,
L.
,
Shivanian
,
E.
, and
Ezzati
,
R.
,
2017
, “
Shooting Homotopy Analysis Method: A Fast Method to Find Multiple Solutions of Nonlinear Boundary Value Problems Arising in Fluid Mechanics
,”
Eng. Comput.
,
34
(
2
), pp.
471
498
.
40.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
.
41.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.
42.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.
43.
Oztop
,
H. F.
, and
Nada
,
E. A.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
44.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Ferrohydrodynamic and Magnetohydrodynamic Effects on Ferrofluid Flow and Convective Heat Transfer
,”
Energy
,
75
, pp.
400
410
.
45.
Merkin
,
J. H.
,
1985
, “
On Dual Solutions Occurring in Mixed Convection in a Porous Medium
,”
J. Eng. Math.
,
20
(
2
), pp.
171
179
.
46.
Weidman
,
P. D.
,
Kubitschek
,
D. G.
, and
Davis
,
A. M. J.
,
2006
, “
The Effect of Transpiration on Self-Similar Boundary Layer Flow Over Moving Surfaces
,”
Int. J. Eng. Sci.
,
44
(
11–12
), pp.
730
737
.
47.
Roşca
,
A. V.
, and
Pop
,
I.
,
2013
, “
Flow and Heat Transfer Over a Vertical Permeable Stretching/Shrinking Sheet With a Second Order Slip
,”
Int. J. Heat Mass Transfer
,
60
, pp.
355
364
.
48.
Nazar
,
R.
,
Noor
,
A.
,
Jafar
,
K.
, and
Pop
,
I.
,
2014
, “
Stability Analysis of Three-Dimensional Flow and Heat Transfer Over a Permeable Shrinking Surface in a Cu-Water Nanofluid
,”
Int. J. Math. Comput. Stat. Nat. Phys. Eng.
,
8
(5), pp.
782
788
.https://waset.org/publications/9998253/stability-analysis-of-three-dimensional-flow-and-heat-transfer-over-a-permeable-shrinking-surface-in-a-cu-water-nanofluid
49.
Jusoh
,
R.
,
Nazar
,
R.
, and
Pop
,
I.
,
2017
, “
Flow and Heat Transfer of Magnetohydrodynamic Three-Dimensional Maxwell Nanofluid Over a Permeable Stretching/Shrinking Surface With Convective Boundary Conditions
,”
Int. J. Mech. Sci.
,
124–125
, pp.
166
173
.
50.
Harris
,
S. D.
,
Ingham
,
D. B.
, and
Pop
,
I.
,
2009
, “
Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium: Brinkman Model With Slip
,”
Transp. Porous Media
,
77
(
2
), pp.
267
285
.
51.
Ahmad
,
R.
,
Mustafa
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Numerical Study of MHD Nanofluid Flow and Heat Transfer past a Bidirectional Exponentially Stretching Sheet
,”
J. Magn. Magn. Mater.
,
407
, pp.
69
74
.
52.
Liu
,
I.
,
Wang
,
H. H.
, and
Peng
,
Y.
,
2013
, “
Flow and Heat Transfer for Three-Dimensional Flow Over an Exponentially Stretching Surface
,”
Chem. Eng. Commun.
,
200
(
2
), pp.
253
268
.
53.
Miklavčič
,
M.
, and
Wang
,
C. Y.
,
2006
, “
Viscous Flow Due to a Shrinking Sheet
,”
Q. Appl. Math.
,
64
, pp.
283
290
.
54.
Fang
,
T. G.
,
Zhang
,
J.
, and
Yao
,
S. S.
,
2009
, “
Viscous Flow Over an Unsteady Shrinking Sheet With Mass Transfer
,”
Chin. Phys. Lett.
,
26
(1), p.
14703
.
55.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nanofluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.
56.
Ali
,
K.
,
Ashraf
,
M.
,
Ahmad
,
S.
, and
Batool
,
K.
,
2012
, “
Viscous Dissipation and Radiation Effects in MHD Stagnation Point Flow Towards a Stretching Sheet With Induced Magnetic Field
,”
World Appl. Sci. J.
,
16
(1), pp.
1638
1648
.https://pdfs.semanticscholar.org/1458/ba7dce69232c759c30f65d42e1317163229d.pdf
57.
Narla
,
V. K.
,
Prasad
,
K. M.
, and
Ramanamurthy
,
J. V.
,
2015
, “
Peristaltic Transport of Jeffrey Nanofluid in Curved Channels
,”
Procedia Eng.
,
127
, pp.
869
876
.
58.
Rehman
,
F. U.
,
Nadeem
,
S.
, and
Haq
,
R. U.
,
2017
, “
Heat Transfer Analysis for Three Dimensional Stagnation-Point Flow Over an Exponentially Stretching Surface
,”
Chin. J. Phys
,
55
(
4
), pp.
1552
1560
.
59.
Zin
,
N. A. M.
,
Khan
,
I.
, and
Shafie
,
S.
,
2016
, “
The Impact Silver Nanoparticles on MHD Free Convection Flow of Jeffrey Fluid Over an Oscillating Vertical Plate Embedded in a Porous Medium
,”
J. Mol. Liq.
,
222
, pp.
138
150
.
60.
Aaiza
,
G.
,
Khan
,
I.
, and
Shafie
,
S.
,
2015
, “
Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled With Saturated Porous Medium
,”
Nanoscale Res. Lett.
,
10
(1), pp.
1
14
.
61.
Das
,
S.
, and
Jana
,
R. N.
,
2015
, “
Natural Convective Magneto-Nanofluid Flow and Radiative Heat Transfer past a Moving Vertical Plate
,”
Alexandria Eng. J.
,
54
(
1
), pp.
55
64
.
62.
Babu
,
M. J.
,
Sandeep
,
N.
,
Raju
,
C. S. K.
,
Reddy
,
J. V. R.
, and
Sugunamma
,
V.
,
2016
, “
Nonlinear Thermal Radiation and Induced Magnetic Field Effects on Stagnation-Point Flow of Ferrofluids
,”
J. Adv. Phys.
,
5
(4), pp.
302
308
.
You do not currently have access to this content.