This paper presents Darcy–Forchheimer three-dimensional (3D) flow of water-based carbon nanotubes (CNTs) with heterogeneous–homogeneous reactions. A bi-directional linear extendable surface has been employed to create the flow. Flow in porous space is represented by Darcy–Forchheimer expression. Heat transfer mechanism is explored through convective heating. Equal diffusion coefficients are considered for both autocatalyst and reactants. Results for single-wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) have been presented and compared. The diminishment of partial differential framework into nonlinear ordinary differential framework is made through suitable transformations. Optimal homotopy scheme is used for arrangements development of governing flow problem. Optimal homotopic solution expressions for velocities and temperature are studied through plots by considering various estimations of physical variables. The skin friction coefficients and local Nusselt number are analyzed through plots. Our findings depict that the skin friction coefficients and local Nusselt number are enhanced for larger values of the nanoparticles volume fraction.

References

References
1.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
,
2001
, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
,
79
(
14
), p.
2252
.
2.
Xue
,
Q. Z.
,
2005
, “
Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Phys. B
,
368
(
1–4
), pp.
302
307
.
3.
Ding
,
Y.
,
Alias
,
H.
,
Wen
,
D.
, and
Williams
,
R. A.
,
2006
, “
Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids)
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
240
250
.
4.
Wang
,
J.
,
Zhu
,
J.
,
Zhang
,
X.
, and
Chen
,
Y.
,
2013
, “
Heat Transfer and Pressure Drop of Nanofluids Containing Carbon Nanotubes in Laminar Flows
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
716
721
.
5.
Safaei
,
M. R.
,
Togun
,
H.
,
Vafai
,
K.
,
Kazi
,
S. N.
, and
Badarudin
,
A.
,
2014
, “
Investigation of Heat Transfer Enhancement in a Forward-Facing Contracting Channel Using FMWCNT Nanofluids
,”
Numer. Heat Transfer, Part A
,
66
(
12
), pp.
1321
1340
.
6.
Ellahi
,
R.
,
Hassan
,
M.
, and
Zeeshan
,
A.
,
2015
, “
Study of Natural Convection MHD Nanofluid by Means of Single and Multi Walled Carbon Nanotubes Suspended in a Salt Water Solutions
,”
IEEE Trans. Nanotech.
,
14
(
4
), pp.
726
734
.
7.
Hayat
,
T.
,
Hussain
,
Z.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Effects of Homogeneous and Heterogeneous Reactions in Flow of Nanofluids Over a Nonlinear Stretching Surface With Variable Surface Thickness
,”
J. Mol. Liq.
,
221
, pp.
1121
1127
.
8.
Iqbal
,
Z.
,
Azhar
,
E.
, and
Maraj
,
E. N.
,
2017
, “
Transport Phenomena of Carbon Nanotubes and Bioconvection Nanoparticles on Stagnation Point Flow in Presence of Induced Magnetic Field
,”
Phys. E
,
91
, pp.
128
135
.
9.
Khan
,
U.
,
Ahmed
,
N.
, and
Mohyud-Din
,
S. T.
,
2017
, “
Numerical Investigation for Three Dimensional Squeezing Flow of Nanofluid in a Rotating Channel With Lower Stretching Wall Suspended by Carbon Nanotubes
,”
Appl. Therm. Eng.
,
113
, pp.
1107
1117
.
10.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2017
, “
On Darcy-Forchheimer Flow of Carbon Nanotubes Due to a Rotating Disk
,”
Int. J. Heat Mass Transfer
,
112
, pp.
248
254
.
11.
Hayat
,
T.
,
Ahmed
,
S.
,
Muhammad
,
T.
,
Alsaedi
,
A.
, and
Ayub
,
M.
,
2017
, “
Computational Modeling for Homogeneous-Heterogeneous Reactions in Three-Dimensional Flow of Carbon Nanotubes
,”
Results Phys.
,
7
, pp.
2651
2657
.
12.
Khan
,
U.
,
Ahmed
,
N.
, and
Mohyud-Din
,
S. T.
,
2017
, “
Heat Transfer Effects on Carbon Nanotubes Suspended Nanofluid Flow in a Channel With Non-Parallel Walls Under the Effect of Velocity Slip Boundary Condition: A Numerical Study
,”
Neural Comput. Appl.
,
28
(
1
), pp.
37
46
.
13.
Khan
,
U.
,
Ahmed
,
N.
,
Mohyud-Din
,
S. T.
, and
Sikander
,
W.
,
2017
, “
Flow of Carbon Nanotubes Suspended Nanofluid in Stretchable Non-Parallel Walls
,”
Neural Comput. Appl.
(epub).
14.
Khan
,
U.
,
Ahmed
,
N.
, and
Mohyud-Din
,
S. T.
,
2017
, “
3D Squeezed Flow of γAl2O3–H2O and γAl2O3–C2H6O2 Nanofluids: A Numerical Study
,”
Int. J. Hydrogen Energy
,
42
, pp.
24620
24633
.
15.
Ahmed
,
N.
,
Khan
,
U.
, and
Mohyud-Din
,
S. T.
,
2017
, “
Influence of an Effective Prandtl Number Model on Squeezed Flow of γAl2O3-H2O and γAl2O3-C2H6O2 Nanofluids
,”
J. Mol. Liq.
,
238
, pp.
447
454
.
16.
Ahmed
,
N.
,
Khan
,
U.
, and
Mohyud-Din
,
S. T.
,
2018
, “
A Theoretical Investigation of Unsteady Thermally Stratified Flow of γAl2O3-H2O and γAl2O3-C2H6O2 Nanofluids Through a Thin Slit
,”
J. Phys. Chem. Solids
,
119
, pp.
296
308
.
17.
Saba
,
F.
,
Ahmed
,
N.
,
Hussain
,
S.
,
Khan
,
U.
,
Mohyud-Din
,
S. T.
, and
Darus
,
M.
,
2018
, “
Thermal Analysis of Nanofluid Flow Over a Curved Stretching Surface Suspended by Carbon Nanotubes With Internal Heat Generation
,”
Appl. Sci.
,
8
(
3
), p.
395
.
18.
Hayat
,
T.
,
Muhammad
,
K.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Melting Heat in Radiative Flow of Carbon Nanotubes With Homogeneous-Heterogeneous Reactions
,”
Commun. Theor. Phys.
,
69
(
4
), p.
441
.
19.
Sheikholeslami
,
M.
,
Hayat
,
T.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
MHD Forced Convection Flow of Nanofluid in a porous Cavity With Hot Elliptic Obstacle by Means of Lattice Boltzmann Method
,”
Int. J. Mech. Sci.
,
135
, pp.
532
540
.
20.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Darcy-Forchheimer Squeezed Flow of Carbon Nanotubes With Thermal Radiation
,”
J. Phys. Chem. Solids
,
120
, pp.
79
86
.
21.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung Durch Boden
,”
Z. Ver. D. Ing.
,
45
, pp.
1782
1788
.
22.
Muskat
,
M.
,
1946
,
The Flow of Homogeneous Fluids Through Porous Media
,
Edwards
, Ann Arbor,
MI
.
23.
Seddeek
,
M. A.
,
2006
, “
Influence of Viscous Dissipation and Thermophoresis on Darcy-Forchheimer Mixed Convection in a Fluid Saturated Porous Media
,”
J. Colloid Interface Sci.
,
293
(
1
), pp.
137
142
.
24.
Sadiq
,
M. A.
, and
Hayat
,
T.
,
2016
, “
Darcy-Forchheimer Flow of Magneto Maxwell Liquid Bounded by Convectively Heated Sheet
,”
Results Phys.
,
6
, pp.
884
890
.
25.
Hayat
,
T.
,
Muhammad
,
T.
,
Al-Mezal
,
S.
, and
Liao
,
S. J.
,
2016
, “
Darcy-Forchheimer Flow With Variable Thermal Conductivity and Cattaneo-Christov Heat Flux
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
8
), pp.
2355
2369
.
26.
Bakar
,
S. A.
,
Arifin
,
N. M.
,
Nazar
,
R.
,
Ali
,
F. M.
, and
Pop
,
I.
,
2016
, “
Forced Convection Boundary Layer Stagnation-Point Flow in Darcy-Forchheimer Porous Medium Past a Shrinking Sheet
,”
Front. Heat Mass Transfer
,
7
(1), p.
38
.
27.
Umavathi
,
J. C.
,
Ojjela
,
O.
, and
Vajravelu
,
K.
,
2017
, “
Numerical Analysis of Natural Convective Flow and Heat Transfer of Nanofluids in a Vertical Rectangular Duct Using Darcy-Forchheimer-Brinkman Model
,”
Int. J. Therm. Sci.
,
111
, pp.
511
524
.
28.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Darcy-Forchheimer Flow Due to a Curved Stretching Surface With Cattaneo-Christov Double Diffusion: A Numerical Study
,”
Results Phys.
,
7
, pp.
2663
2670
.
29.
Muhammad
,
T.
,
Alsaedi
,
A.
,
Shehzad
,
S. A.
, and
Hayat
,
T.
,
2017
, “
A Revised Model for Darcy-Forchheimer Flow of Maxwell Nanofluid Subject to Convective Boundary Condition
,”
Chin. J. Phys.
,
55
(
3
), pp.
963
976
.
30.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2017
, “
An Optimal Study for Darcy-Forchheimer Flow With Generalized Fourier's and Fick's Laws
,”
Results Phys.
,
7
, pp.
2878
2885
.
31.
Muhammad
,
T.
,
Alsaedi
,
A.
,
Hayat
,
T.
, and
Shehzad
,
S. A.
,
2017
, “
A Revised Model for Darcy-Forchheimer Three-Dimensional Flow of Nanofluid Subject to Convective Boundary Condition
,”
Results Phys.
,
7
, pp.
2791
2797
.
32.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Numerical Study for Darcy-Forchheimer Flow of Nanofluid Due to an Exponentially Stretching Curved Surface
,”
Results Phys.
,
8
, pp.
764
771
.
33.
Hayat
,
T.
,
Aziz
,
A.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
An Optimal Analysis for Darcy-Forchheimer 3D Flow of Carreau Nanofluid With Convectively Heated Surface
,”
Results Phys.
,
9
, pp.
598
608
.
34.
Merkin
,
J. H.
,
1996
, “
A Model for Isothermal Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow
,”
Math. Comp. Modell.
,
24
(
8
), pp.
125
136
.
35.
Chaudhary
,
M. A.
, and
Merkin
,
J. H.
,
1995
, “
A Simple Isothermal Model for Homogeneous-Heterogeneous Reactions in Boundary-Layer Flow—II: Different Diffusivities for Reactant and Autocatalyst
,”
Fluid Dyn. Res.
,
16
(
6
), pp.
335
359
.
36.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
On the Stagnation-Point Flow Towards a Stretching Sheet With Homogeneous-Heterogeneous Reactions Effects
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
11
), pp.
4296
4302
.
37.
Kameswaran
,
P. K.
,
Shaw
,
S.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2013
, “
Homogeneous-Heterogeneous Reactions in a Nanofluid Flow Due to Porous Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
465
472
.
38.
Imtiaz
,
M.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Hobiny
,
A.
,
2016
, “
Homogeneous-Heterogeneous Reactions in MHD Flow Due to an Unsteady Curved Stretching Surface
,”
J. Mol. Liq.
,
221
, pp.
245
253
.
39.
Abbas
,
Z.
, and
Sheikh
,
M.
,
2017
, “
Numerical Study of Homogeneous-Heterogeneous Reactions on Stagnation Point Flow of Ferrofluid With Non-Linear Slip Condition
,”
Chin. J. Chem. Eng.
,
25
(
1
), pp.
11
17
.
40.
Sajid
,
M.
,
Iqbal
,
S. A.
,
Naveed
,
M.
, and
Abbas
,
Z.
,
2017
, “
Effect of Homogeneous-Heterogeneous Reactions and Magnetohydrodynamics on Fe3O4 Nanofluid for the Blasius Flow With Thermal Radiations
,”
J. Mol. Liq.
,
233
, pp.
115
121
.
41.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Darcy-Forchheimer Flow With Cattaneo-Christov Heat Flux and Homogeneous-Heterogeneous Reactions
,”
PLoS One
,
12
(
4
), p.
e0174938
.
42.
Hayat
,
T.
,
Sajjad
,
R.
,
Ellahi
,
R.
,
Alsaedi
,
A.
, and
Muhammad
,
T.
,
2017
, “
Homogeneous-Heterogeneous Reactions in MHD Flow of Micropolar Fluid by a Curved Stretching Surface
,”
J. Mol. Liq.
,
240
, pp.
209
220
.
43.
Liao
,
S. J.
,
2010
, “
An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
15
(
8
), pp.
2003
2016
.
44.
Hayat
,
T.
,
Muhammad
,
T.
,
Alsaedi
,
A.
, and
Alhuthali
,
M. S.
,
2015
, “
Magnetohydrodynamic Three-Dimensional Flow of Viscoelastic Nanofluid in the Presence of Nonlinear Thermal Radiation
,”
J. Magn. Magn. Mater.
,
385
, pp.
222
229
.
45.
Turkyilmazoglu
,
M.
,
2016
, “
An Effective Approach for Evaluation of the Optimal Convergence Control Parameter in the Homotopy Analysis Method
,”
Filomat
,
30
(
6
), pp.
1633
1650
.
46.
Zeeshan
,
A.
,
Majeed
,
A.
, and
Ellahi
,
R.
,
2016
, “
Effect of Magnetic Dipole on Viscous Ferro-Fluid Past a Stretching Surface With Thermal Radiation
,”
J. Mol. Liq.
,
215
, pp.
549
554
.
47.
Hayat
,
T.
,
Aziz
,
A.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2016
, “
On Magnetohydrodynamic Three-Dimensional Flow of Nanofluid Over a Convectively Heated Nonlinear Stretching Surface
,”
Int. J. Heat Mass Transfer
,
100
, pp.
566
572
.
48.
Muhammad
,
T.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Qayyum
,
A.
,
2017
, “
Hydromagnetic Unsteady Squeezing Flow of Jeffrey Fluid Between Two Parallel Plates
,”
Chin. J. Phys
,
55
(
4
), pp.
1511
1522
.
49.
Hayat
,
T.
,
Aziz
,
A.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Active and Passive Controls of Jeffrey Nanofluid Flow Over a Nonlinear Stretching Surface
,”
Results Phys.
,
7
, pp.
4071
4078
.
50.
Muhammad
,
T.
,
Hayat
,
T.
,
Shehzad
,
S. A.
, and
Alsaedi
,
A.
,
2018
, “
Viscous Dissipation and Joule Heating Effects in MHD 3D Flow With Heat and Mass Fluxes
,”
Results Phys.
,
8
, pp.
365
371
.
51.
Ariel
,
P. D.
,
2007
, “
The Three-Dimensional Flow past a Stretching Sheet and the Homotopy Perturbation Method
,”
Comput. Math. Appl.
,
54
(
7–8
), pp.
920
925
.
You do not currently have access to this content.