The thermal conductivity of microfluids comprising Ni33-ppza)4Cl2 metal string complex (MSC) microparticles in an aqueous glycerol solution was investigated using the transient hot-wire method. A comparative analysis of the thermal-conductivity enhancements of microfluids and nanofluids revealed that the best results were achieved using microparticles of monocrystalline MSCs Ni33-ppza)4Cl2 as well as Ni55-pppmda)4Cl2 micro- and copper nanoparticles. Compared to the base fluid, the thermal-conductivity enhancements were 72% for Ni3–water–glycerol, 53% for Cu–water–glycerol, and 47% for Ni5–water–glycerol. It is shown that the high thermal-conductivity enhancement achieved with Ni3 microfluids is a result of higher stability in compare with nanofluid due to the lower density of the microparticles and the formation of particle assemblies. Therefore, the formation of hydrogen bonds between the MSC particles (through their organic fragments) and water molecules, takes place. Colloidal structure of Ni3-microfluids has a significant impact on their thermophysical properties.

References

1.
Maxwell
,
J. C.
,
1881
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford, UK
.
2.
Choi, S. U. S., 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, Vol. 66, American Society of Mechanical Engineers, New York, pp. 99–105.
3.
Das, S. K., Choi, S. U.,
Wenhua
,
Y.
, and
Pradeep
,
T.
,
2007
,
Nanofluids: Science and Technology
,
Wiley
,
Hoboken, NJ
.
4.
Choi
,
S. U. S.
,
2008
, “
Nanofluids: A New Field of Scientific Research and Innovative Applications
,”
Heat Transfer Eng.
,
29
(
5
), pp.
429
431
.
5.
Solangi
,
K. H.
,
Kazi
,
S. N.
,
Luhur
,
M. R.
,
Badarudin
,
A.
,
Amiri
,
A.
,
Sadri
,
R.
,
Zubir
,
M. N. M.
,
Gharehkhani
,
S.
, and
Teng
,
K. H.
,
2015
, “
A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids
,”
Energy
,
89
, pp.
1065
1086
.
6.
Suleimanov
,
B. A.
,
Ismayilov
,
R. H.
,
Abbasov
,
H. F.
,
Wang
,
W. Z.
, and
Peng
,
S. M.
,
2017
, “
Thermophysical Properties of Nano- and Microfluids With [Ni5(μ5-Pppmda)4Cl2] Metal String Complex Particles
,”
Colloids Surf. A
,
513
, pp.
41
50
.
7.
Jama
,
M.
,
Singh
,
T.
,
Gamaleldin
,
S. M.
,
Koc
,
M.
,
Samara
,
A.
,
Isaifan
,
R. J.
, and
Atieh
,
M. A.
,
2016
, “
Critical Review on Nanofluids: Preparation, Characterization, and Applications
,”
J. Nanomater.
,
2016
, p. 6717624.
8.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.
9.
Colangelo
,
G.
,
Favale
,
E.
,
Milanese
,
M.
,
de Risi
,
A.
, and
Laforgia
,
D.
,
2017
, “
Cooling of Electronic Devices: Nanofluids Contribution
,”
Appl. Therm. Eng.
,
127
, pp.
421
435
.
10.
Bhogare
,
R. A.
, and
Kothawale
,
B. S.
,
2013
, “
A Review on Applications and Challenges of Nano-Fluids as Coolant in Automobile Radiator
,”
Int. J. Sci. Res. Publ.
,
3
(8), pp. 435–441.http://www.ijsrp.org/research-paper-0813/ijsrp-p20106.pdf
11.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Inter. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
12.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1/2
), pp.
167
171
.
13.
Feng
,
Y.
,
Yu
,
B.
,
Xu
,
P.
, and
Zou
,
M.
,
2007
, “
The Effective Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles
,”
J. Phys. D: Appl. Phys.
,
40
(
10
), pp.
3164
3171
.
14.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
15.
Sundar
,
L. S.
,
Farooky
,
M. H.
,
Sarada
,
N.
, and
Singh
,
M. K.
,
2013
, “
Experimental Thermal Conductivity of Ethylene Glycol and Water Mixture Based Low Volume Concentration of Al2O3 and CuO Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
41
, pp.
41
46
.
16.
Colangelo
,
G.
,
Favale
,
E.
,
Milanese
,
M.
,
Starace
,
G.
, and
de Risi
,
A.
,
2017
, “
Experimental Measurements of Al2O3 and CuO Nanofluids Interaction With Microwaves
,”
J. Energy Eng.
,
143
(
2
), pp. 143–147.
17.
Colangelo
,
G.
,
Favale
,
E.
,
Paola
,
M.
,
Milanese
,
M.
, and
de Risi
,
A.
,
2016
, “
Thermal Conductivity, Viscosity and Stability of Al2O3‐Diathermic Oil Nanofluids for Solar Energy Systems
,”
Energy
,
95
, pp.
124
136
.
18.
Milanese
,
M.
,
Iacobazzi
,
F.
,
Colangelo
,
G.
, and
de Risi
,
A.
,
2016
, “
An Investigation of Layering Phenomenon at the Liquid‐Solid Interface in Cu and CuO Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
103
, pp.
564
571
.
19.
Iacobazzi
,
F.
,
Milanese
,
M.
,
Colangelo
,
G.
,
Lomascolo
,
M.
, and
de Risi
,
A.
,
2016
, “
An Explanation of the Al2O3 Nanofluid Thermal Conductivity Based on the Phonon Theory of Liquid
,”
Energy
,
116
, pp.
786
794
.
20.
Colangelo
,
G.
,
Milanese
,
M.
, and
de
,
R. A.
,
2017
, “
Numerical Simulation of Thermal Efficiency of an Innovative Al2O3 Nanofluid Solar Thermal Collector: Influence of Nanoparticles Concentration
,”
Therm. Sci.
,
21
(
6 Part B
), pp.
2769
2779
.
21.
Suleimanov
,
B. A.
, and
Abbasov
,
H. F.
,
2016
, “
Effect of Copper Nanoparticle Aggregation on the Thermal Conductivity of Nanofluids
,”
Russ. J. Phys. Chem. A
,
90
(
2
), pp.
420
428
.
22.
Tsao
,
T.-B.
,
Lee
,
G.-H.
,
Yeh
,
C.-Y.
, and
Peng
,
S.-M.
,
2003
, “
Supramolecular Assembly of Linear Trinickel Complexes Incorporating Metalloporphyrins: A Novel One-Dimensional Polymer and Oligomer
,”
Dalton Trans.
,
8
, pp.
1465
1471
.
23.
Cl´erac
,
R.
,
Cotton
,
F. A.
,
Dunbar
,
K. R.
,
Murillo
,
C. A.
,
Pascual
,
I.
, and
Wang
,
X.
,
1999
, “
Further Study of the Linear Trinickel(ii) Complex of Dipyridylamide
,”
Inorg. Chem.
,
38
(
11
), pp.
2655
2657
.
24.
Ismayilov
,
R. H.
,
Wang
,
W.-Z.
,
Lee
,
G.-H.
,
Wang
,
R.-R.
,
Liu
,
I. P.-H.
,
Yeh
,
C.-Y.
, and
Peng
,
S.-M.
,
2007
, “
New Versatile Ligand Family, Pyrazine-Modulated Oligo-α-Pyridylamino Ligands, From Coordination Polymer to Extended Metal Atom Chains
,”
Dalton Trans.
,
27
, pp.
2898
2907
.
25.
Nagasaka
,
Y.
, and
Nagashima
,
A.
,
1981
, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E: Sci. Instrum.
,
14
(
12
), pp.
1435
1440
.
26.
Hong
,
S. W.
,
Kang
,
Y. T.
,
Kleinstreuer
,
C.
, and
Koo
,
J.
,
2011
, “
Impact Analysis of Natural Convection on Thermal Conductivity Measurements of Nanofluids Using the Transient Hot-Wire Method
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3448
3456
.
27.
Efremov
,
I. F.
, and
Usyarov
,
O. G.
,
1976
, “
The Long-Range Interaction Between Colloid and Other Particles and the Formation of Periodic Colloid Structures
,”
Russ. Chem. Rev.
,
45
(
5
), pp.
435
453
.
28.
Chen
,
I. W. P.
,
Fu
,
M. D.
,
Tseng
,
W. H.
,
Yu
,
J. Y.
,
Wu
,
S. H.
,
Ku
,
C. J.
,
Chen
,
G. H.
, and
Peng
,
S. M.
,
2006
, “
Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms
,”
Angew. Chem. Int. Ed.
,
45
(
35
), pp.
5814
5818
.
29.
Zafarani-Moattar
,
M. T.
, and
Majdan-Cegincara
,
R.
,
2013
, “
Investigation on Stability and Rheological Properties of Nanofluid of ZnO Nanoparticles Dispersed in Poly(ethylene Glycol)
,”
Fluid Phase Equilib.
,
354
, pp.
102
108
.
30.
Tseng
,
W. J.
, and
Lin
,
K.-C.
,
2003
, “
Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions
,”
Mater. Sci. Eng. A
,
355
(
1–2
), pp.
186
192
.
You do not currently have access to this content.