Recent studies have shown that doping nanoparticles (NPs) into a molten salt eutectic can induce salt molecules to form a stelliform nanostructure that can enhance the effective heat capacity of the mixture. This phenomenon can result from a unique characteristic of a eutectic molten salt system, which can self-form a nanostructure on a nanoscale solid surface. Hence, such an enhancement was only observed in a molten salt eutectic. Similarly, a stelliform nanostructure can be artificially synthesized and dispersed in other liquids. Mixing polar-ended molecules with a NP in a medium can induce the polar-ended molecules ionically bonded to a NP to form a stelliform nanostructure. Hence, this may enhance the effective heat capacity of the mixture. In this study, we disperse various NPs and polar-ended materials into a sodium acetate trihydrate (SAT) at different ratios to explore the effect of NP type and concentration as well as polar-ended materials and their concentrations on the resultant heat capacity of SAT. The result shows that the specific heat capacity was the highest with silica NP at 1% concentration of weight and polar-ended material at 4% concentration.

References

References
1.
Wang
,
X.
, and
Mujumdar
,
A.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
2.
Keblinski
,
P.
,
Eastman
,
J.
, and
Cahill
,
D.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
6
), pp.
36
44
.
3.
Chol
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME Publ. Fed
,
231
, pp.
99
106
.
4.
Keblinski
,
P.
,
Phillpot
,
S.
,
Choi
,
S.
, and
Eastman
,
J.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
.
5.
Yu
,
W.
, and
Choi
,
S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1/2
), pp.
167
171
.
6.
Jang
,
S.
, and
Choi
,
S.
,
2004
, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
(
21
), pp.
4316
4318
.
7.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S.
,
Choi
,
S.
, and
Eastman
,
J.
,
2004
, “
Effect of Liquid Layering at the Liquid–Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
,
47
(
19–20
), pp.
4277
4284
.
8.
Evans
,
W.
,
Fish
,
J.
, and
Keblinski
,
P.
,
2006
, “
Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity
,”
Appl. Phys. Lett.
,
88
(
9
), p.
093116
.
9.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1431
1438
.
10.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
,
2008
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
,
10
(
7
), pp.
1089
1097
.
11.
Buongiorno
,
J.
,
Venerus
,
D.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y.
,
Keblinski
,
P.
,
Hu
,
L.
, and
Alvarado
,
J.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
,
106
(
9
), p.
094312
.
12.
Mishra
,
P.
,
Mukherjee
,
S.
,
Nayak
,
S.
, and
Panda
,
A.
,
2014
, “
A Brief Review on Viscosity of Nanofluids
,”
Int. Nano Lett.
,
4
(
4
), pp.
109
120
.
13.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2007
, “
A Critical Review of Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
5
), pp.
797
817
.
14.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
280
.
15.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
16.
Vajjha
,
R.
, and
Das
,
D.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.
17.
Zhou
,
S.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.
18.
Namburu
,
P.
,
Kulkarni
,
D.
,
Dandekar
,
A.
, and
Das
,
D.
,
2007
, “
Experimental Investigation of Viscosity and Specific Heat of Silicon Dioxide Nanofluids
,”
Micro Nano Lett.
,
2
(
3
), pp.
67
71
.
19.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.
20.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.
21.
Dudda
,
B.
, and
Shin
,
D.
,
2013
, “
Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications
,”
Int. J. Therm. Sci.
,
69
, pp.
37
42
.
22.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
548
.
23.
Seo
,
J.
, and
Shin
,
D.
,
2016
, “
Size Effect of Nanoparticle on Specific Heat in a Ternary Nitrate (LiNO3–NaNO3–KNO3) Salt Eutectic for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
102
, pp.
144
148
.
24.
Ho
,
M.
, and
Pan
,
C.
,
2014
, “
Optimal Concentration of Alumina Nanoparticles in Molten Hitec Salt to Maximize Its Specific Heat Capacity
,”
Int. J. Heat Mass Transfer
,
70
, pp.
174
184
.
25.
Andreu-Cabedo
,
P.
,
Mondragon
,
R.
,
Hernandez
,
L.
,
Martinez-Cuenca
,
R.
,
Cabedo
,
L.
, and
Julia
,
J.
,
2014
, “
Increment of Specific Heat Capacity of Solar Salt With SiO2 Nanoparticles
,”
Nanoscale Res. Lett.
,
9
(
1
), p.
11
.
26.
Chieruzzi
,
M.
,
Cerritelli
,
G.
,
Miliozzi
,
A.
, and
Kenny
,
J.
,
2012
, “
Effect of Nanoparticles on Heat Capacity of Nanofluids Based on Molten Salts as PCM for Thermal Energy Storage
,”
Nanoscale Res. Lett.
,
8
(
1
), p.
448
.
27.
Schuller
,
M.
,
Shao
,
Q.
, and
Lalk
,
T.
,
2015
, “
Experimental Investigation of the Specific Heat of a Nitrate–Alumina Nanofluid for Solar Thermal Energy Storage Systems
,”
Int. J. Therm. Sci.
,
91
, pp.
142
145
.
28.
Lasfargues
,
M.
,
Bell
,
A.
, and
Ding
,
Y.
,
2016
, “
In Situ Production of Titanium Dioxide Nanoparticles in Molten Salt Phase for Thermal Energy Storage and Heat-Transfer Fluid Applications
,”
J. Nanopart. Res.
,
18
(
6
), pp.
1
11
.
29.
Qiao
,
G.
,
Lasfargues
,
M.
,
Alexiadis
,
A.
, and
Ding
,
Y.
,
2016
, “
Simulation and Experimental Study of the Specific Heat Capacity of Molten Salt Based Nanofluids
,”
Appl. Therm. Eng.
,
111
, pp.
1517
1522
.
30.
Hu
,
Y.
,
He
,
Y.
,
Zhang
,
Z.
, and
Wen
,
D.
,
2017
, “
Effect of Al2O3 Nanoparticle Dispersion on the Specific Heat Capacity of a Eutectic Binary Nitrate Salt for Solar Power Applications
,”
Energy Convers. Manage.
,
142
, pp.
366
373
.
31.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Experimental Validation of Enhanced Heat Capacity of Ionic Liquid-Based Nanomaterial
,”
Appl. Phys. Lett.
,
102
(
17
), p.
173906
.
32.
Seo
,
J.
,
Mostafavi
,
A.
, and
Shin
,
D.
,
2018
, “
Molecular Dynamics Study on Enhanced Specific Heat of Alkali Molten Salt Mixtures
,”
Int. J. Multiscale Comput. Eng.
,
116
(4), pp. 321–333.
33.
Shin
,
D.
,
Tiznobaik
,
H.
, and
Banerjee
,
D.
,
2014
, “
Specific Heat Mechanism of Molten Salt Nanofluids
,”
Appl. Phys. Lett.
,
104
(
12
), p.
121914
.
34.
Pournorouz
,
Z.
,
Mostafavi
,
A.
,
Pinto
,
A.
,
Bokka
,
A.
,
Jeon
,
J.
, and
Shin
,
D.
,
2017
, “
Enhanced Thermophysical Properties Via PAO Superstructure
,”
Nanoscale Res. Lett.
,
12
(
1
), p.
29
.
35.
Farid
,
M.
,
Khudhair
,
A.
,
Razack
,
S.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1597
1615
.
36.
Sharma
,
A.
,
Tyagi
,
V.
,
Chen
,
C.
, and
Buddhi
,
D.
,
2009
, “
Review on Thermal Energy Storage With Phase Change Materials and Applications
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
318
345
.
37.
Zalba
,
B.
,
Marı́n
,
J.
,
Cabeza
,
L.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
38.
Wada
,
T.
,
Yamamoto
,
R.
, and
Matsuo
,
Y.
,
1984
, “
Heat Storage Capacity of Sodium Acetate Trihydrate During Thermal Cycling
,”
Sol. Energy
,
33
(
3–4
), pp.
373
375
.
39.
Araki
,
N.
,
Futamura
,
M.
,
Makino
,
A.
, and
Shibata
,
H.
,
1995
, “
Measurements of Thermophysical Properties of Sodium Acetate Hydrate
,”
Int. J. Thermophys.
,
16
(
6
), pp.
1455
1466
.
40.
Wang
,
B.
,
Zhou
,
L.
, and
Peng
,
X.
,
2006
, “
Surface and Size Effects on the Specific Heat Capacity of Nanoparticles
,”
Int. J. Thermophys.
,
27
(
1
), pp.
139
151
.
41.
Tiznobaik
,
H.
,
2016
, “
Enhanced Specific Heat of Molten Salt Nanofluids
,” Ph.D. dissertation, The University of Texas Arlington, Arlington, TX.
You do not currently have access to this content.