In this attempt, melting heat transfer characteristic of unsteady squeezed nanofluid flows in non-Darcy porous medium is interrogated. The nanofluid model incorporates Brownian diffusion and thermophoresis to characterize the heat and mass transport in the presence of thermal and solutal stratification. Similarity solutions are implemented to acquire nonlinear system of ordinary differential equations which are then evaluated using Homotopic technique. Flow behavior of involved physical parameters is examined and explanations are stated through graphs. We determine and analyze skin friction coefficient, Nusselt and Sherwood numbers through graphs. It is evident that larger melting parameter results in decrement in temperature field, while horizontal velocity enhances for higher melting parameter. Moreover, temperature and concentration fields are dominant for higher Brownian diffusion parameter.

References

References
1.
Stefan
,
M. J.
, “
Versuch Über Die Scheinbare Adhesion, Sitzungsber Sächs Akad Wiss Wein
,”
Math.-Nat. Wiss. Kl
,
69
(
1874
), pp.
713
721
.
2.
Das
,
K.
,
Jana
,
S.
, and
Acharya
,
N.
,
2016
, “
Slip Effects on Squeezing Flow of Nano-Fluid Between Two Parallel Disks
,”
IJME
,
21
(
1
), pp.
5
20
.
3.
Forchheimer
,
P.
,
1901
, “
Wasserbewewegung Durch Boden
,”
ZVDI
,
45
, pp.
1782
1788
.
4.
Hady
,
F. M.
,
Mohamed
,
R. A.
,
Mahdy
,
A.
, and
Omima
,
A. Z.
,
2016
, “
Non-Darcy Natural Convection Boundary Layer Flow Over a Vertical Cone in Porous Media Saturated With a Nano-Fluid Containing Gyrotactic Microorganisms With Convective Boundary Condition
,”
J. Nanofluids
,
5
(
5
), pp.
765
773
.
5.
Chamkha
,
A.
,
Abbasbandy
,
S.
, and
Rashad
,
A. M.
,
2015
, “
Non-Darcy Natural Convection Flow for Non-Newtonian Nanofluid Over Cone Saturated in Porous Medium With Uniform Heat and Volume Fraction Fluxes
,”
Int. J. Num. Methods Heat Fluid Flow
,
25
(
2
), pp.
422
437
.
6.
Awad
,
F. G.
,
Sibanda
,
P.
, and
Murthy
,
P. V. S. N.
,
2015
, “
A Note on Double Dispersion Effects in a Nano-Fluid Flow in a Non-Darcy Porous Medium
,”
ASME J. Heat Transfer
,
137
(
10
), p.
104501
.
7.
Hayat
,
T.
,
Haider
,
F.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Darcy–Forchheimer Squeezed Flow of Carbon Nanotubes With Thermal Radiation
,”
J. Phys. Chem. Solids
,
120
, pp.
79
86
.
8.
Dogonchi
,
A. S.
,
Hatami
,
M.
,
Hosseinzadeh
,
K.
, and
Domairry
,
G.
,
2015
, “
Non-Spherical Particles Sedimentation in an Incompressible Newtonian Medium by Padé Approximation
,”
Powder Tech.
,
278
, pp.
248
256
.
9.
Ghadikolaei
,
S. S.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2017
, “
Analysis of Unsteady MHD Eyring-Powell Squeezing Flow in Stretching Channel With Considering Thermal Radiation and Joule Heating Effect Using AGM
,”
Case Stud. Therm. Eng.
,
10
, pp.
579
594
.
10.
Rahimi
,
J.
,
Ganji
,
D. D.
,
Khaki
,
M.
, and
Hosseinzadeh
,
K.
,
2017
, “
Solution of the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid Over a Linear Stretching Sheet by Collocation Method
,”
Alexandria Eng. J.
,
56
(
4
), pp.
621
627
.
11.
Ghadikolaei
,
S. S.
,
Hosseinzadeh
,
K.
,
Yassari
,
M.
,
Sadeghi
,
H.
, and
Ganji
,
D. D.
,
2018
, “
Analytical and Numerical Solution of Non-Newtonian Second-Grade Fluid Flow on a Stretching Sheet
,”
Therm. Sci. Eng. Prog.
,
5
, pp.
309
316
.
12.
Gholinia
,
M.
,
Gholinia
,
S.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2018
, “
Investigation on Ethylene Glycol Nano Fluid Flow Over a Vertical Permeable Circular Cylinder Under Effect of Magnetic Field
,”
Res. Phys.
,
9
, pp.
1525
1533
.
13.
Balazadeh
,
N.
,
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Li
,
Z.
,
2018
, “
Semi Analytical Analysis for Transient Eyring-Powell Squeezing Flow in a Stretching Channel Due to Magnetic Field Using DTM
,”
J. Mol. Liq.
,
260
, pp.
30
36
.
14.
Choi
,
S. U. S.
, and Estman, J. A.,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” ASME-Publications-Fed, 231, pp. 99–106.
15.
Saidi
,
M. H.
, and
Tamim
,
H.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of Thermophoresis and Brownian Motion
,”
Adv. Powder Technol.
,
27
(
2
), pp.
564
574
.
16.
Hayat
,
T.
,
Hussain
,
Z.
,
Ahmed
,
B.
, and
Alsaedi
,
A.
,
2017
, “
Base Fluid With CNTs as Nanoparticles Through Non-Darcy Porous Medium in Convectively Heated Flow
,”
Adv. Powder Technol.
,
28
(
8
), pp.
1855
1865
.
17.
Gupta
,
A. K.
, and
Roy
,
S. S.
,
2015
, “
Numerical Treatment for Investigation of Squeezing Unsteady Nanofluid Flow Between Parallel Plates
,”
Powder Technol.
,
279
, pp.
282
289
.
18.
Sheikholeslami
,
M.
,
Akbar
,
N. S.
, and
Mustafa
,
M. T.
,
2017
, “
MHD Effects Nanofluid With Energy Hydrothermal Behavior Between Collateral Plates: Application of New Semi Analytical Technique
,”
Therm. Sci.
, 21(5), pp. 2081–2093.
19.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Rashidi
,
M. M.
,
2016
, “
Magnetic Field Effect on Unsteady Nanofluid Flow and Heat Transfer Using Buongiorno Model
,”
J. Magn. Magn. Mater.
,
416
, pp.
164
173
.
20.
Shahmohamadi
,
H.
, and
Rashidi
,
M. M.
,
2016
, “
VIM Solution of Squeezing MHD Nano-Fluid Flow in a Rotating Channel With Lower Stretching Porous Surface
,”
Adv. Powder Technol.
,
27
(
1
), pp.
171
178
.
21.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2018
, “
Influence of Electric Field on Fe3O4-Water Nanofluid Radiative and Convective Heat Transfer in a Permeable Enclosure
,”
J. Mol. Liq.
,
250
, pp.
404
412
.
22.
Hosseini
,
S. R.
,
Sheikholeslami
,
M.
,
Ghasemian
,
M.
, and
Ganji
,
D. D.
,
2018
, “
Nanofluid Heat Transfer Analysis in a Microchannel Heat Sink (MCHS) Under the Effect of Magnetic Field by Means of KKL Model
,”
Powder Technol.
,
324
, pp.
36
47
.
23.
Sheikholeslami
,
M.
,
Jafaryar
,
M.
,
Bateni
,
K.
, and
Ganji
,
D. D.
,
2018
, “
Two Phase Modeling of Nanofluid Flow in Existence of Melting Heat Transfer by Means of HAM
,”
Indian J. Phys.
,
92
(
2
), pp.
205
2014
.
24.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Moradi
,
R.
,
2017
, “
Forced Convection in Existence of Lorentz Forces in a Porous Cavity With Hot Circular Obstacle Using Nanofluid Via Lattice Boltzmann Method
,”
J. Mol. Liq.
,
246
, pp.
103
111
.
25.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Moradi
,
R.
,
2017
, “
Heat Transfer of Fe3O4–Water Nanofluid in a Permeable Medium With Thermal Radiation in Existence of Constant Heat Flux
,”
Chem. Eng. Sci.
,
174
, pp.
326
336
.
26.
Sheikholeslami
,
M.
,
Nimafar
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Analytical Approach for the Effect of Melting Heat Transfer on Nanofluid Heat Transfer
,”
Eur. Phys. J. Plus
,
132
(
9
), p.
385
.
27.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Numerical Analysis of Nanofluid Transportation in Porous Media Under the Influence of External Magnetic Source
,”
J. Mol. Liq.
,
233
, pp.
499
507
.
28.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2017
, “
Numerical Approach for Magnetic Nanofluid Flow in a Porous Cavity Using CuO Nanoparticles
,”
Mate. Des.
,
120
, pp.
382
393
.
29.
Sheikholeslami
,
M.
,
Ziabakhsh
,
Z.
, and
Ganji
,
D. D.
,
2017
, “
Transport of Magnetohydrodynamic Nanofluid in a Porous Media
,”
Colloids Surf., A
,
520
, pp.
201
212
.
30.
Hatami
,
M.
,
Hosseinzadeh
,
K.
,
Domairry
,
G.
, and
Behnamfar
,
M. T.
,
2014
, “
Numerical Study of MHD Two-Phase Couette Flow Analysis for Fluid-Particle Suspension Between Moving Parallel Plates
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
5
), pp.
2238
2245
.
31.
Hatami
,
M.
,
Sheikholeslami
,
M.
,
Hosseini
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Analytical Investigation of MHD Nanofluid Flow in Non-Parallel Walls
,”
J. Mol. Liq.
,
194
, pp.
251
259
.
32.
Ghadikolaei
,
S. S.
,
Yassari
,
M.
,
Sadeghi
,
H.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2017
, “
Investigation on Thermophysical Properties of TiO2–Cu/H2O Hybrid Nanofluid Transport Dependent on Shape Factor in MHD Stagnation Point Flow
,”
Powder Technol.
,
322
, pp.
428
438
.
33.
Ghadikolaei
,
S. S.
,
Hosseinzadeh
,
K.
,
Yassari
,
M.
,
Sadeghi
,
H.
, and
Ganji
,
D. D.
,
2017
, “
Boundary Layer Analysis of Micropolar Dusty Fluid With TiO2 Nanoparticles in a Porous Medium Under the Effect of Magnetic Field and Thermal Radiation Over a Stretching Sheet
,”
J. Mol. Liq.
,
244
, pp.
374
389
.
34.
Hosseinzadeh
,
K.
,
Amiri
,
A. J.
,
Ardahaie
,
S. S.
, and
Ganji
,
D. D.
,
2017
, “
Effect of Variable Lorentz Forces on Nanofluid Flow in Movable Parallel Plates Utilizing Analytical Method
,”
Case Stud. Therm. Eng.
,
10
, pp.
595
610
.
35.
Ghadikolaei
,
S. S.
,
Hosseinzadeh
,
K.
,
Ganji
,
D. D.
, and
Hatami
,
M.
,
2018
, “
Fe3O4–(CH2OH)2 Nanofluid Analysis in a Porous Medium Under MHD Radiative Boundary Layer and Dusty Fluid
,”
J. Mol. Liq.
,
258
, pp.
172
185
.
36.
Ardahaie
,
S. S.
,
Amiri
,
A. J.
,
Amouei
,
A.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2018
, “
Investigating the Effect of Adding Nanoparticles to the Blood Flow in Presence of Magnetic Field in a Porous Blood Arterial
,”
Inf. Med. Unlocked
,
10
, pp.
71
81
.
37.
Hosseinzadeh
,
K.
,
Alizadeh
,
M.
, and
Ganji
,
D. D.
,
2018
, “
Hydrothermal Analysis on MHD Squeezing Nanofluid Flow in Parallel Plates by Analytical Method
,”
Int. J. Mech. Mater. Eng.
,
13
(
1
), p.
4
.
38.
Ghadikolaei
,
S. S.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2018
, “
Investigation on Three Dimensional Squeezing Flow of Mixture Base Fluid (Ethylene Glycol-Water) Suspended by Hybrid Nanoparticle (Fe3O4-Ag) Dependent on Shape Factor
,”
J. Mol. Liq.
,
262
, pp.
376
388
.
39.
Ghadikolaei
,
S. S.
,
Hosseinzadeh
,
K.
,
Ganji
,
D. D.
, and
Jafari
,
B.
,
2018
, “
Nonlinear Thermal Radiation Effect on Magneto Casson Nanofluid Flow With Joule Heating Effect Over an Inclined Porous Stretching Sheet
,”
Case Stud. Therm. Eng.
,
12
, pp.
176
187
.
40.
Kameswaran
,
P. K.
,
Hemalatha
,
K.
, and
Madhavi
,
M. V. D. N. S.
,
2016
, “
Melting Effect on Convective Heat Transfer From a Vertical Plate Embedded in a Non-Darcy Porous Medium With Variable Permeability
,”
Adv. Powder Technol.
,
27
(
2
), pp.
417
425
.
41.
Das
,
K.
,
2014
, “
Radiation and Melting Heat Effects on MHD Boundary Layer Flow Over a Moving Surface
,”
Ain Shams Eng. J.
,
5
(
4
), pp.
1207
1214
.
42.
Hayat
,
T.
,
Farooq
,
M.
, and
Alsaedi
,
A.
,
2014
, “
Melting Heat Transfer in the Stagnation Point Flow of Maxwell Fluid With Double Diffusive Convection
,”
Int. J. Num. Methods Heat Fluid Flow
,
24
(
3
), pp.
760
774
.
43.
Krishnamurthy
,
M. R.
,
Prasannakumara
,
B. C.
,
Gireesha
,
B. J.
, and
Gorla
,
R. S. R.
,
2016
, “
Suspended Particle Effect on Slip Flow and Melting Heat Transfer of Nanofluid Over a Stretching Sheet Embedded in a Porous Medium in the Presence of Nonlinear Thermal Radiation
,”
J. Nanofluids
,
5
(
4
), pp.
502
510
.
44.
Gireesha
,
B. J.
,
Mahanthesh
,
B.
,
Shivakumara
,
I. S.
, and
Eshwarappa
,
K. M.
,
2016
, “
Melting Heat Transfer in Boundary Layer Stagnation-Point Flow of Nanofluid Toward a Stretching Sheet With Induced Magnetic Field
,”
Eng. Sci. Technol.: Int. J.
,
19
(
1
), pp.
313
321
.
45.
Mabood
,
F.
, and
Mastroberardino
,
A.
,
2015
, “
Melting Heat Transfer on MHD Convective Flow of a Nanofluid Over a Stretching Sheet With Viscous Dissipation and Second Order Slip
,”
J. Taiwan Inst. Chem. Eng.
, 57(1), pp. 62–68
46.
Hayat
,
T.
,
Imtiaz
,
M.
, and
Alsaedi
,
A.
,
2016
, “
Melting Heat Transfer in MHD Flow of Cu-Water Nanofluid With Viscous Dissipation and Joule Heating
,”
Adv. Powder Technol.
,
27
(
4
), pp.
1301
1308
.
47.
Atouei
,
S. A.
,
Hosseinzadeh
,
K.
,
Hatami
,
M.
,
Ghasemi
,
S. E.
,
Sahebi
,
S. A. R.
, and
Ganji
,
D. D.
,
2015
, “
Heat Transfer Study on Convective–Radiative Semi-Spherical Fins With Temperature-Dependent Properties and Heat Generation Using Efficient Computational Methods
,”
Appl. Therm. Eng.
,
89
, pp.
299
305
.
48.
Hosseinzadeh
,
K.
,
Afsharpanah
,
F.
,
Zamani
,
S.
,
Gholinia
,
M.
, and
Ganji
,
D. D.
,
2018
, “
A Numerical Investigation on Ethylene Glycol-Titanium Dioxide Nanofluid Convective Flow Over a Stretching Sheet in Presence of Heat Generation/Absorption
,”
Case Stud. Therm. Eng.
,
12
, pp.
228
236
.
49.
Mousazadeh
,
S. M.
,
Shahmardan
,
M. M.
,
Tavangar
,
T.
,
Hosseinzadeh
,
K.
, and
Ganji
,
D. D.
,
2018
, “
Numerical Investigation on Convective Heat Transfer Over Two Heated Wall-Mounted Cubes in Tandem and Staggered Arrangement
,”
Theor. Appl. Mech. Lett.
,
8
(
3
), pp.
171
183
.
50.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2016
, “
Nanofluid Hydrothermal Behavior in Existence of Lorentz Forces Considering Joule Heating Effect
,”
J. Mol. Liq.
,
224
, pp.
526
537
.
51.
Sheikholeslami, M., Rashidi, M. M., Al Saad, D. M., Firouzi, F., Rokni, H. B., and Domairry, G., 2016, “Steady Nanofluid Flow Between Parallel Plates Considering Thermophoresis and Brownian Effects,”
J. King. Saud. Uni.-Sci.
, 28(4), pp. 380–389.
52.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Nanofluid Flow and Heat Transfer Between Parallel Plates Considering Brownian Motion Using DTM
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
651
663
.
53.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2013
, “
Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates
,”
Powder Technol.
,
235
, pp.
873
879
.
54.
Sheikholeslami
,
M.
,
Ashorynejad
,
H. R.
,
Ganji
,
D. D.
, and
Yıldırım
,
A.
,
2012
, “
Homotopy Perturbation Method for Three-Dimensional Problem of Condensation Film on Inclined Rotating Disk
,”
Sci. Iran.
,
19
(
3
), pp.
437
442
.
55.
Sheikholeslami
,
M.
,
Ellahi
,
R.
,
Ashorynejad
,
H. R.
,
Domairry
,
G.
, and
Hayat
,
T.
,
2014
, “
Effects of Heat Transfer in Flow of Nanofluids Over a Permeable Stretching Wall in a Porous Medium
,”
J. Comp. Theor. Nanosci.
,
11
(
2
), pp.
486
496
.
56.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
, 2017, “
Analytical Investigation for Lorentz Forces Effect on Nanofluid Marangoni Boundary Layer Hydrothermal Behavior Using HAM
,”
Indian J. Phys.
, 91(12), pp. 1581–1587.
57.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
,
Ashorynejad
,
H. R.
, and
Rokni
,
H. B.
,
2012
, “
Analytical Investigation of Jeffery-Hamel Flow With High Magnetic Field and Nanoparticle by Adomian Decomposition Method
,”
Appl. Math. Mech.
,
33
(
1
), pp.
25
36
.
58.
Sheikholeslami
,
M.
,
Ganji
,
D. D.
, and
Ashorynejad
,
H. R.
,
2013
, “
Investigation of Squeezing Unsteady Nanofluid Flow Using ADM
,”
Powder Technol.
,
239
, pp.
259
265
.
59.
Sheikholeslami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Magnetohydrodynamic Flow in a Permeable Channel Filled With Nanofluid
,”
Sci. Iran., Trans. B
,
21
, pp.
203
212
.
60.
Shekholeslami
,
M.
,
Ashorynejad
,
H. R.
,
Ganji
,
D. D.
, and
Hashim
,
I.
,
2012
, “
Investigation of the Laminar Viscous Flow in a Semi-Porous Channel in the Presence of Uniform Magnetic Field Using Optimal Homotopy Asymptotic Method
,”
Sains Malays.
,
41
, pp.
1281
1285
.
61.
Liao
,
S. J.
,
2003
,
Beyond Perturbation: Introduction to Homotopy Analysis Method
,
Chapman and Hall/CRC Press
,
Boca Raton
, FL.
62.
Liao
,
S. J.
,
2012
,
Homotopy Analysis Method in Non-Linear Differential Equations
,
Springer/Higher Education Press
,
Berlin
.
63.
Abbasi
,
F. M.
,
Shehzad
,
S. A.
,
Hayat
,
T.
, and
Alhuthali
,
M. S.
,
2016
, “
Mixed Convection Flow of Jeffrey Nanofluid With Thermal Radiation and Double Stratification
,”
J. Hydrodyn.
,
28
(
5
), pp.
840
849
.
64.
Hayat
,
T.
,
Imtiaz
,
M.
, and
Alsaedi
,
A.
,
2016
, “
Unsteady Flow of a Nanofluid With Double Stratification and Magnetohydrodynamics
,”
Int. J. Heat Mass Transfer
,
92
, pp.
100
109
.
65.
Sui
,
J.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Chen
,
G.
,
2015
, “
Mixed Convection Heat Transfer in Power Law Fluids Over a Moving Conveyor Along an Inclined Plate
,”
Int. J. Heat Mass Transfer
,
85
, pp.
1023
1033
.
66.
Farooq
,
M.
,
Khan
,
M. I.
,
Waqas
,
M.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Khan
,
M. I.
,
2016
, “
MHD Stagnation Point Flow of Viscoelastic Nanofluid With Non-Linear Radiation Effects
,”
J. Mol. Liq.
,
221
, pp.
1097
1103
.
67.
Lin
,
Y.
, and
Zheng
,
L.
,
2015
, “
Marangoni Boundary Layer Flow and Heat Transfer of Copper-Water Nanofluid Over a Porous Medium Disk
,”
AIP Adv.
,
5
(
10
), p.
107225
.
68.
Hayat
,
T.
,
Ali
,
S.
,
Awais
,
M.
, and
Obaidat
,
S.
,
2013
, “
Stagnation Point Flow of Burgers' Fluid Over a Stretching Surface
,”
Prog. Comput. Fluid Dyn.: Int. J.
,
13
(
1
), pp. 48–53.
69.
Hayat
,
T.
,
Ali
,
S.
,
Awais
,
M.
, and
Alhuthali
,
M. S.
,
2015
, “
Newtonian Heating in Stagnation Point Flow of Burgers Fluid
,”
Appl. Math. Mech.
,
36
, pp.
61
68
.
You do not currently have access to this content.