Nanostructured semiconducting materials are promising candidates for thermoelectrics (TEs) due to their potential to suppress phonon transport while preserving electrical properties. Modeling phonon-boundary scattering in complex geometries is crucial for predicting materials with high conversion efficiency. However, the simultaneous presence of ballistic and diffusive phonons challenges the development of models that are both accurate and computationally tractable. Using the recently developed first-principles Boltzmann transport equation (BTE) approach, we investigate diffusive phonons in nanomaterials with wide mean-free-path (MFP) distributions. First, we derive the short MFP limit of the suppression function, showing that it does not necessarily recover the value predicted by standard diffusive transport, challenging previous assumptions. Second, we identify a Robin type boundary condition describing diffuse surfaces within Fourier's law, extending the validity of diffusive heat transport in terms of Knudsen numbers. Finally, we use this result to develop a hybrid Fourier/BTE approach to model realistic materials, obtaining good agreement with experiments. These results provide insight on thermal transport in materials that are within experimental reach and open opportunities for large-scale screening of nanostructured TE materials.

References

References
1.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
.
2.
Raihan
,
A.
,
Siddique
,
M.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2017
, “
A Review of the State of the Science on Wearable Thermoelectric Power Generators (Tegs) and Their Existing Challenges
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
730
744
.
3.
Ritz
,
F.
, and
Peterson
,
C. E.
,
2004
, “
Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Program Overview
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 6–13, pp.
2950
2957
.
4.
Jeffrey Snyder
,
G.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nat. Mater.
,
7
(
2
), pp.
105
114
.
5.
Gang
,
C.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
, Oxford, UK.
6.
Liao
,
B.
,
Qiu
,
B.
,
Zhou
,
J.
,
Huberman
,
S.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Significant Reduction of Lattice Thermal Conductivity by the Electron-Phonon Interaction in Silicon With High Carrier Concentrations: A First-Principles Study
,”
Phys. Rev. Lett.
,
114
(
11
), p.
115901
.
7.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O'Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
(
6856
), pp.
597
602
.
8.
Hochbaum
,
A. I.
,
Chen
,
R.
,
Delgado
,
R. D.
,
Liang
,
W.
,
Garnett
,
E. C.
,
Najarian
,
M.
,
Majumdar
,
A.
, and
Yang
,
P.
,
2008
, “
Enhanced Thermoelectric Performance of Rough Silicon Nanowires
,”
Nature
,
451
(
7175
), pp.
163
167
.
9.
Boukai
,
A. I.
,
Bunimovich
,
Y.
,
Tahir-Kheli
,
J.
,
Yu
,
J.-K.
,
Goddard
,
W. A.
, III.
, and
Heath
,
J. R.
,
2008
, “
Silicon Nanowires as Efficient Thermoelectric Materials
,”
Nature
,
451
(
7175
), pp.
168
171
.
10.
Song
,
D.
, and
Chen
,
G.
,
2004
, “
Thermal Conductivity of Periodic Microporous Silicon Films
,”
Appl. Phys. Lett.
,
84
(
5
), pp.
687
689
.
11.
Lee
,
J.
,
Lim
,
J.
, and
Yang
,
P.
,
2015
, “
Ballistic Phonon Transport in Holey Silicon
,”
Nano Lett.
,
15
(
5
), pp.
3273
3279
.
12.
Tang
,
J.
,
Wang
,
H.-T.
,
Lee
,
D. H.
,
Fardy
,
M.
,
Huo
,
Z.
,
Russell
,
T. P.
, and
Yang
,
P.
,
2010
, “
Holey Silicon as an Efficient Thermoelectric Material
,”
Nano Lett.
,
10
(
10
), pp.
4279
4283
.
13.
Hopkins
,
P. E.
,
Reinke
,
C. M.
,
Su
,
M. F.
,
Olsson
,
R. H.
,
Shaner
,
E. A.
,
Leseman
,
Z. C.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
El-Kady
,
I.
,
2011
, “
Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
,”
Nano Lett.
,
11
(
1
), pp.
107
112
.
14.
Verdier
,
M.
,
Anufriev
,
R.
,
Ramiere
,
A.
,
Termentzidis
,
K.
, and
Lacroix
,
D.
,
2017
, “
Thermal Conductivity of Phononic Membranes With Aligned and Staggered Lattices of Holes at Room and Low Temperatures
,”
Phys. Rev. B
,
95
(
20
), p.
205438
.
15.
Alejandro
,
V.-F.
,
Ryan A
,
D.
,
Jeffrey K
,
E.
,
John
,
C.
,
Jeremy A
,
J.
,
Peraud
,
J.-P. M.
,
Lingping
,
Z.
,
Zhengmao
,
L.
,
Alexei A
,
M.
,
Evelyn N
,
W.
,
Alvarado-Gil, J. J.
,
Sledzinska, M.
,
Torres, C. M. S.
,
Chen, G.
, and
Nelson, K. A.
,
2016
, “
Thermal Transport in Suspended Silicon Membranes Measured by Laser-Induced Transient Gratings
,”
AIP Adv.
,
6
(
12
), p.
121903
.
16.
Romano
,
G.
, and
Kolpak
,
A. M.
,
2017
, “
Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials
,”
Sci. Rep.
,
7
, p.
44379
.
17.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.
18.
Romano
,
G.
, and
Grossman
,
J. C.
,
2015
, “
Heat Conduction in Nanostructured Materials Predicted by Phonon Bulk Mean Free Path Distribution
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071302
.
19.
Hua
,
C.
, and
Minnich
,
A. J.
,
2014
, “
Transport Regimes in Quasiballistic Heat Conduction
,”
Phys. Rev. B
,
89
(
9
), p.
094302
.
20.
Romano
,
G.
,
Esfarjani
,
K.
,
Strubbe
,
D. A.
,
Broido
,
D.
, and
Kolpak
,
A. M.
,
2016
, “
Temperature-Dependent Thermal Conductivity in Silicon Nanostructured Materials Studied by the Boltzmann Transport Equation
,”
Phys. Rev. B
,
93
(
3
), p.
035408
.
21.
Li
,
W.
,
Carrete
,
J.
,
Katcho
,
N. A.
, and
Mingo
,
N.
,
2014
, “
Shengbte: A Solver of the Boltzmann Transport Equation for Phonons
,”
Comput. Phys. Commun.
,
185
(
6
), pp.
1747
1758
.
22.
Loy
,
J. M.
,
Murthy
,
J. Y.
, and
Singh
,
D.
,
2013
, “
A Fast Hybrid Fourier–Boltzmann Transport Equation Solver for Nongray Phonon Transport
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011008
.
23.
Jeng
,
M.-S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042410
.
24.
Hellman
,
O.
, and
Abrikosov
,
I. A.
,
2013
, “
Temperature-Dependent Effective Third-Order Interatomic Force Constants From First Principles
,”
Phys. Rev. B
,
88
(
14
), p.
144301
.
25.
Hellman
,
O.
,
Abrikosov
,
I. A.
, and
Simak
,
S. I.
,
2011
, “
Lattice Dynamics of Anharmonic Solids From First Principles
,”
Phys. Rev. B
,
84
(
18
), p.
180301
.
You do not currently have access to this content.