The feasibility of using a liquid metal with a high thermal conductivity as a functional fluid for realizing a variable conductance radiator (VCR) for space applications was proposed and investigated. The variable thermal conductivity of the radiator can be achieved by moving the liquid metal using a magneto-hydraulic pump between the two reservoirs in accordance with the temperature requirements of the on-board equipment. The liquid metal radiator proposed in this study is much more effective for saving heater power under cold condition while effectively dissipating heat to deep space under hot condition. The thermal behavior of the liquid metal radiator was demonstrated using the ambient thermal tests under cooling and insulation modes of the radiator. The performance of the proposed VCR was evaluated by comparing it with that of the conventional radiator whose conductivity value is fixed. The proposed radiator using the liquid metal was more effective than conventional radiator for suppressing the rate of increase of temperature for the heat dissipation unit in the cooling mode and for saving additional heater power by removing the liquid metal in the insulation mode.

References

References
1.
Gilmore
,
D. G.
,
2002
,
Spacecraft Thermal Control Handbook: Fundamental Technologies
,
2nd ed.
, Vol. 1,
The Aerospace Corporation
, El Segundo, CA.
2.
Farra
,
D.
,
Schneider
,
W.
,
Osiander
,
R.
,
Champion
,
J. L.
,
Darrin
,
M. A. G.
,
Douglas
,
D.
, and
Swanson
,
T. D.
,
2002
, “
Controlling Variable Emittance (MEMS) Coatings for Space Applications
,” Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 30–June 1, pp.
1020
1024
.
3.
Osiander
,
R.
,
Firebaugh
,
S. L.
,
Champion
,
J. L.
,
Farra
,
D.
, and
Darrin
,
M. A. G.
,
2004
, “
Microelectromechanical Device for Satellite Thermal Control
,”
IEEE Sens. J.
,
4
(
4
), pp.
525
530
.
4.
Kim
,
T.
,
Han
,
S.
, and
Oh
,
H.
,
2017
, “
Design and Performance Evaluation of MEMS-Based Spaceborne Variable Emissivity Radiator Using Movement of Electrified Beads
,”
J. Microelectromech. Syst.
,
26
(
1
), pp.
113
119
.
5.
Shimazaki
,
K.
,
Ohnishi
,
A.
, and
Nagasaka
,
Y.
,
2002
, “
Development of Spectral Selective Multilayer Film for a Variable Emittance Device and Its Radiation Properties Measurements
,”
Int. J. Thermophys.
,
24
(3), pp. 757–769.
6.
Tachikawa
,
S.
,
Shimazaki
,
K.
,
Ohnishi
,
A.
,
Hirosawa
,
H.
,
Shimakawa
,
Y.
,
Ochi
,
A.
,
Okamoto
,
A.
, and
Nakamura
,
Y.
,
2003
, “
Smart Radiation Device Based on a Perovskite Manganese Oxide
,”
Ninth International Symposium on Materials in a Space Environment
, Noordwijk, The Netherlands, June 16–20, pp. 41–47.https://www.researchgate.net/publication/238590695_Smart_Radiation_Device_based_on_a_perovskite_manganese_oxide
7.
Kang
,
S. J.
, and
Oh
,
H. U.
,
2016
, “
On-Orbit Thermal Design and Validation of 1 U Standardized CubeSat of STEP Cube Lab
,”
Int. J. Aerosp. Eng.
,
2016
, p. 4213189.
8.
Ghoshal
,
U.
,
Grimm
,
D.
,
Ibrani
,
S.
,
Johnston
,
C.
, and
Miner
,
A.
,
2005
, “
High-Performance Liquid Metal Cooling Loops
,”
21st IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 15–17, pp. 16–19.
9.
Liu
,
T.
,
Sen
,
P.
, and
Kim
,
C. J.
,
2012
, “
Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices
,”
J. Microelectromech. Syst.
,
21
(
2
), pp. 443–450.
10.
Ma
,
K. Q.
, and
Liu
,
J.
,
2007
, “
Heat-Driven Liquid Metal Cooling Device for the Thermal Management of a Computer Chip
,”
J. Phys. D
,
40
(
15
), pp.
4722
4729
.
11.
Dean
,
R. N.
,
Harris
,
D. K.
,
Palkar
,
A. Y.
, and
Wonacott
,
G. D.
,
2012
, “
Liquid Metal-Filled Micro Heat Pipes for Thermal Management of Solid-State Devices
,”
J. IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4888
4894
.
12.
Danielle De La Bastide,
2017
, “
Scientists Have Created Shape Shifting Liquid Metal That Can Be Programmed
,” Interesting Engineering, Venice, LA, accessed Nov. 20, 2017, https://interestingengineering.com/scientists-have-created-shape-shifting-liquid-metal-that-can-be-programmed
13.
Zrodnikov
,
A. V.
,
Efanov
,
A. D.
, and
Orlov
,
Y. I.
,
2004
, “
Heavy Liquid Metal Coolant–Lead–Bismuth and Lead–Technology
,”
At. Energy
,
97
(2), pp.
531
537
.
14.
Kunquan
,
M. A.
, and
Liu
,
J.
,
2007
, “
Liquid Metal Cooling in Thermal Management of Computer Chips
,”
Front. Energy Power Eng. China
,
1
(
4
), pp.
384
402
.
15.
Guthrie
,
R. I. L.
, and
Iida
,
T.
,
1994
, “
Thermodynamic Properties of Liquid Metals
,”
Mater. Sci. Eng., Proc. Conf.: A
,
178
(1–2), pp.
35
41
.
16.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
, Hoboken, NJ.
17.
Timothy
,
D.
,
2008
,
Sinda/Fluint Thermal Desktop User's Manual, Version 5.2
,
C&R Technologies
, Boulder, CO.
You do not currently have access to this content.