Thermally conductive soft composites are in high demand, and aligning the fill material is a potential method of enhancing their thermal performance. In particular, magnetic alignment of nickel particles has previously been demonstrated as an easy and effective way to improve directional thermal conductivity of such composites. However, the effect of compression on the thermal performance of these materials has not yet been investigated. This work investigates the thermal performance of magnetically aligned nickel fibers in a soft polymer matrix under compression. The fibers orient themselves in the direction of the applied magnetic field and align into columns, resulting in a 3× increase in directional thermal conductivity over unaligned composites at a volume fraction of 0.15. Nevertheless, these aligned fiber columns buckle under strain resulting in an increase in the composite thermal resistance. These results highlight potential pitfalls of magnetic filler alignment when designing soft composites for applications where strain is expected such as thermal management of electronics.

References

References
1.
Bartlett
,
M. D.
,
Kazem
,
N.
,
Powell-Palm
,
M. J.
,
Huang
,
X.
,
Sun
,
W.
,
Malen
,
J. A.
, and
Majidi
,
C.
,
2017
, “
High Thermal Conductivity in Soft Elastomers With Elongated Liquid Metal Inclusions
,”
Proc. Natl. Acad. Sci.
,
114
(
9
), pp.
3
8
.
2.
Prasher
,
R. S.
, and
Chiu
,
C.-P.
,
2017
, “
Thermal Interface Materials
,”
Materials for Advanced Packaging
, springer, New York, pp.
511
535
.
3.
Gurrum
,
S. P.
,
Suman
,
S. K.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2004
, “
Thermal Issues in Next-Generation Integrated Circuits
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
709
714
.
4.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.
5.
Mark
,
J. E.
,
2009
,
Polymer Data Handbook
,
Oxford University Press
,
New York
.
6.
Choy
,
C. L.
,
1977
, “
Thermal Conductivity of Polymers
,”
Polymer
,
18
(
10
), pp.
984
1004
.
7.
Chen
,
H.
,
Ginzburg
,
V. V.
,
Yang
,
J.
,
Yang
,
Y.
,
Liu
,
W.
,
Huang
,
Y.
,
Du
,
L.
, and
Chen
,
B.
,
2016
, “
Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications
,”
Prog. Polym. Sci.
,
59
, pp.
41
85
.
8.
Sarvar
,
F.
,
Whalley
,
D.
, and
Conway
,
P.
,
2006
, “
Thermal Interface Materials - A Review of the State of the Art
,”
First Electronic Systemintegration Technology Conference
, Dresden, Germany, Sept. 5–7, pp.
1292
1302
.
9.
Schaller
,
R. R.
,
1997
, “
Moore's Law: Past, Present, and Future
,”
IEEE Spectr.
,
34
(6), pp.
52
59
.
10.
Burger
,
N.
,
Laachachi
,
A.
,
Ferriol
,
M.
,
Lutz
,
M.
,
Toniazzo
,
V.
, and
Ruch
,
D.
,
2016
, “
Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory
,”
Prog. Polym. Sci.
,
61
, pp.
1
28
.
11.
Xue
,
Q.
,
2004
, “
The Influence of Particle Shape and Size on Electric Conductivity of Metal-Polymer Composites
,”
Eur. Polym. J.
,
40
(
2
), pp.
323
327
.
12.
Mamunya
,
Y. P.
,
Davydenko
,
V. V.
,
Pissis
,
P.
, and
Lebedev
,
E. V.
,
2002
, “
Electrical and Thermal Conductivity of Polymers Filled With Metal Powders
,”
Eur. Polym. J.
,
38
(
9
), pp.
1887
1897
.
13.
Wong
,
C. P.
, and
Bollampally
,
R. S.
,
1999
, “
Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging
,”
J. Appl. Polym. Sci.
,
74
(
14
), pp.
3396
3403
.
14.
Seshadri
,
I.
,
Esquenazi
,
G. L.
,
Borca-Tasciuc
,
T.
,
Keblinski
,
P.
, and
Ramanath
,
G.
,
2015
, “
Multifold Increases in Thermal Conductivity of Polymer Nanocomposites Through Microwave Welding of Metal Nanowire Fillers
,”
Adv. Mater. Interfaces
,
2
(
15
), pp.
1
6
.
15.
Hong
,
W.-T.
, and
Tai
,
N.-H.
,
2008
, “
Investigations on the Thermal Conductivity of Composites Reinforced With Carbon Nanotubes
,”
Diamond Relat. Mater.
,
17
(
7–10
), pp.
1577
1581
.
16.
Balberg
,
I.
,
Binenbaum
,
N.
, and
Wagner
,
N.
,
1984
, “
Percolation Thresholds in the Three-Dimensional Sticks System
,”
Phys. Rev. Lett.
,
52
(
17
), pp.
1465
1468
.
17.
Lonjon
,
A.
,
Demont
,
P.
,
Dantras
,
E.
, and
Lacabanne
,
C.
,
2012
, “
Low Filled Conductive P(VDF-TrFE) Composites: Influence of Silver Particles Aspect Ratio on Percolation Threshold From Spheres to Nanowires
,”
J. Non. Cryst. Solids
,
358
(
23
), pp.
3074
3078
.
18.
Ralphs
,
M. I.
,
Kemme
,
N.
,
Vartak
,
P. B.
,
Joseph
,
E.
,
Tipnis
,
S.
,
Turnage
,
S.
,
Solanki
,
K. N.
,
Wang
,
R. Y.
, and
Rykaczewski
,
K.
,
2018
, “
In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives
,”
ACS Appl. Mater. Interfaces
,
10
(
2
), pp.
2083
2092
.
19.
Kusy
,
R. P.
, and
Corneliussen
,
R. D.
,
1975
, “
The Thermal Conductivity of Nickel and Copper Dispersed in Poly (Vinyl Chloride)
,”
Polym. Eng. Sci.
,
15
(
2
), pp.
107
112
.
20.
Lebovka
,
N.
,
Lisunova
,
M.
,
Mamunya
,
Y. P.
, and
Vygornitskii
,
N.
,
2006
, “
Scaling in Percolation Behaviour in Conductive-Insulating Composites With Particles of Different Size
,”
J. Phys. D
,
39
(
10
), pp.
2264
2271
.
21.
Xie
,
X. L.
,
Mai
,
Y. W.
, and
Zhou
,
X. P.
,
2005
, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng., R
,
49
(
4
), pp.
89
112
.
22.
Jopek
,
H.
, and
Strek
,
T.
,
2009
, “
Optimization of the Effective Thermal Conductivity of a Composite
,”
Convection Conduction Heat Transfer
, InTech, London, pp.
197
213
.
23.
Feng
,
C. P.
,
Bai
,
L.
,
Shao
,
Y.
,
Bao
,
R. Y.
,
Liu
,
Z. Y.
,
Yang
,
M. B.
,
Chen
,
J.
,
Ni
,
H. Y.
, and
Yang
,
W.
,
2017
, “
A Facile Route to Fabricate Highly Anisotropic Thermally Conductive Elastomeric POE/NG Composites for Thermal Management
,”
Adv. Mater. Interfaces
,
5
(
2
), pp.
1
7
.
24.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.
25.
Yuan
,
C.
,
Duan
,
B.
,
Li
,
L.
,
Xie
,
B.
,
Huang
,
M.
, and
Luo
,
X.
,
2015
, “
Thermal Conductivity of Polymer-Based Composites With Magnetic Aligned Hexagonal Boron Nitride Platelets
,”
ACS Appl. Mater. Interfaces
,
7
(
23
), pp.
13000
13006
.
26.
Renteria
,
J.
,
Legedza
,
S.
,
Salgado
,
R.
,
Balandin
,
M. P.
,
Ramirez
,
S.
,
Saadah
,
M.
,
Kargar
,
F.
, and
Balandin
,
A. A.
,
2015
, “
Magnetically-Functionalized Self-Aligning Graphene Fillers for High-Efficiency Thermal Management Applications
,”
Mater. Des.
,
88
, pp.
214
221
.
27.
Tian
,
X.
,
Itkis
,
M. E.
,
Bekyarova
,
E. B.
, and
Haddon
,
R. C.
,
2013
, “
Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites
,”
Sci. Rep.
,
3
(
1
), p.
1710
.
28.
Schmidt
,
G.
, and
Malwitz
,
M. M.
,
2003
, “
Properties of Polymer-Nanoparticle Composites
,”
Curr. Opin. Colloid Interface Sci.
,
8
(
1
), pp.
103
108
.
29.
Hill
,
R. F.
, and
Supancic
,
P. H.
,
2002
, “
Thermal Conductivity of Platelet-Filled Polymer Composites
,”
J. Am. Ceram. Soc.
,
85
(
4
), pp.
851
857
.
30.
Yan
,
H.
,
Tang
,
Y.
,
Long
,
W.
, and
Li
,
Y.
,
2014
, “
Enhanced Thermal Conductivity in Polymer Composites With Aligned Graphene Nanosheets
,”
J. Mater. Sci.
,
49
(
15
), pp.
5256
5264
.
31.
Martin
,
J. E.
,
2013
, “
Field-Structured Polymer Composites
,”
Macromol. Symp.
,
329
(
1
), pp.
162
172
.
32.
Kimura
,
T.
,
Ago
,
H.
,
Tobita
,
M.
,
Ohshima
,
S.
,
Kyotani
,
M.
, and
Yumura
,
M.
,
2002
, “
Polymer Composites of Carbon Nanotubes Aligned by a Magnetic Field
,”
Adv. Mater
,
14
(
19
), pp.
1380
1383
.
33.
Martin
,
J. E.
, and
Gulley
,
G.
,
2009
, “
Field-Structured Composites for Efficient, Directed Heat Transfer
,”
J. Appl. Phys.
,
106
(
8
), p.
084301
.
34.
Solis
,
K. J.
, and
Martin
,
J. E.
,
2012
, “
Field-Structured Magnetic Platelets as a Route to Improved Thermal Interface Materials
,”
J. Appl. Phys.
,
111
(
7
), p.
073507
.
35.
Martin
,
J. E.
, and
Snezhko
,
A.
,
2013
, “
Driving Self-Assembly and Emergent Dynamics in Colloidal Suspensions by Time-Dependent Magnetic Fields
,”
Rep. Prog. Phys.
,
76
(
12
), p. 126601.
36.
Otiaba
,
K. C.
,
Ekere
,
N. N.
,
Bhatti
,
R. S.
,
Mallik
,
S.
,
Alam
,
M. O.
, and
Amalu
,
E. H.
,
2011
, “
Thermal Interface Materials for Automotive Electronic Control Unit: Trends, Technology and R&D Challenges
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2031
2043
.
37.
K&J Magnetics, Inc.,
2018
, “
The Original K&J Magnet Calculator
,” K&J Magnetics, Inc., Pipersville, PA, accessed July 10, 2018, https://www.kjmagnetics.com/calculator.asp?calcType=block
38.
Thompson
,
D. R.
,
Rao
,
S. R.
, and
Cola
,
B. A.
,
2013
, “
A Stepped-Bar Apparatus for Thermal Resistance Measurements
,”
ASME J. Electron. Packag.
,
135
(
4
), p.
041002
.
39.
Ralphs
,
M. I.
,
Smith
,
B. L.
, and
Roberts
,
N. A.
,
2016
, “
Technique for Direct Measurement of Thermal Conductivity of Elastomers and a Detailed Uncertainty Analysis
,”
Meas. Sci. Technol.
,
27
(
11
), p.
115014
.
40.
Toll
,
S.
,
1998
, “
Packing Mechanics of Fiber Reinforcements
,”
Polym. Eng. Sci.
,
38
(
8
), pp.
1337
1350
.
41.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
,
1970
,
Thermal Conductivity: Metallic Elements and Alloys
(Thermophysical Properties of Matter), Vol. 1, IFI/Plenum, New York, p.
237
.
42.
Powell
,
R. W.
,
Tye
,
R. P.
, and
Hickman
,
M. J.
,
1965
, “
The Thermal Conductivity of Nickel
,”
Int. J. Heat Mass Transfer
,
8
(
5
), pp.
679
688
.
43.
Rai
,
A.
, and
Moore
,
A. L.
,
2017
, “
Enhanced Thermal Conduction and Influence of Interfacial Resistance Within Flexible High Aspect Ratio Copper Nanowire/Polymer Composites
,”
Compos. Sci. Technol.
,
144
, pp.
70
78
.
You do not currently have access to this content.