Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.

References

1.
Bhattacharyya
,
S.
, and
Singh
,
A. K.
,
2009
, “
Augmentation of Heat Transfer From a Solid Cylinder Wrapped With a Porous Layer
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1991
2001
.
2.
T'Joen
,
C.
,
De Jaeger
,
P.
,
Huisseune
,
H.
,
Van Herzeele
,
S.
,
Vorst
,
N.
, and
De Paepe
,
M.
,
2010
, “
Thermo‐Hydraulic Study of a Single Row Heat Exchanger Consisting of Metal Foam Covered Round Tubes
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3262
3274
.
3.
Odabaee
,
M.
, and
Hooman
,
K.
,
2012
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Tube Bank
,”
Appl. Therm. Eng.
,
36
, pp.
456
463
.
4.
Pop
,
I.
, and
Cheng
,
P.
,
1992
, “
Flow Past a Circular Cylinder Embedded in a Porous Medium Based on the Brinkman Model
,”
Int. J. Eng. Sci.
,
30
(
2
), pp.
257
262
.
5.
Nazar
,
R.
,
Amin
,
N.
,
Filip
,
D.
, and
Pop
,
I.
,
2003
, “
The Brinkman Model for the Mixed Convection Boundary Layer Flow Past a Horizontal Circular Cylinder in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
46
(
17
), pp.
3167
3178
.
6.
Sam Wong
,
W.
,
Andrew
,
D.
,
Rees
,
S.
, and
Pop
,
I.
,
2004
, “
Forced Convection Past a Heated Cylinder in a Porous Medium Using a Thermal Nonequilibrium Model: Finite Péclet Number Effects
,”
Int. J. Therm. Sci.
,
43
(
3
), pp.
213
220
.
7.
Saeid
,
N. H.
,
2006
, “
Analysis of Free Convection About a Horizontal Cylinder in a Porous Media Using a Thermal Non-Equilibrium Model
,”
Int. Commun. Heat Mass Transfer
,
33
(
2
), pp.
158
165
.
8.
Yu
,
P.
,
Zeng
,
Y.
,
See Lee
,
T.
,
Bing Chen
,
X.
, and
Tong Low
,
H.
,
2011
, “
Steady Flow Around and Through a Permeable Circular Cylinder
,”
Comput. Fluids
,
42
(
1
), pp.
1
12
.
9.
Al-Sumaily
,
G. F.
,
Sheridan
,
J.
, and
Thompson
,
M. C.
,
2012
, “
Analysis of Forced Convection Heat Transfer From a Circular Cylinder Embedded in a Porous Medium
,”
Int. J. Therm. Sci.
,
51
, pp.
121
131
.
10.
Al-Sumaily
,
G. F.
,
Nakayama
,
A.
,
Sheridan
,
J.
, and
Thompson
,
M. C.
,
2012
, “
The Effect of Porous Media Particle Size on Forced Convection From a Circular Cylinder Without Assuming Local Thermal Equilibrium Between Phases
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3366
3378
.
11.
Sobera
,
M. P.
,
Kleijn
,
C. R.
,
van den Akker
,
H. E. A.
, and
Paul
,
B.
,
2001
, “
Numerical Simulations of the Flow Around a Circular Cylinder Covered by a Porous Medium
,”
Blowing Hot and Cold: Protecting Against Climatic Extremes
, North Atlantic Treaty Organization,
Dresden, Germany
, pp.
7-1
7-9
.
12.
Saada
,
M. A.
,
Chikh
,
S.
, and
Campo
,
A.
,
2007
, “
Natural Convection Around a Horizontal Solid Cylinder Wrapped With a Layer of Fibrous or Porous Material
,”
Int. J. Heat Fluid Flow
,
28
(
3
), pp.
483
495
.
13.
Hooman
,
K.
,
2010
, “
QGECE Research on Heat Exchangers and Air-Cooled Condensers
,”
Australian Geothermal Conference
, Adelaide, Australia, Nov. 17–19, pp.
294
297
.
14.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2011
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow
,”
Transp. Porous Media
,
86
(
3
), pp.
911
923
.
15.
Odabaee
,
M.
, and
Hooman
,
K.
,
2011
, “
Application of Metal Foams in Air-Cooled Condensers for Geothermal Power Plants: An Optimization Study
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
838
843
.
16.
Al-Salem
,
K.
,
Oztop
,
H. F.
, and
Kiwan
,
S.
,
2011
, “
Effects of Porosity and Thickness of Porous Sheets on Heat Transfer Enhancement in a Cross Flow Over Heated Cylinder
,”
Int. Commun. Heat Mass Transfer
,
38
(
9
), pp.
1279
1282
.
17.
Chumpia
,
A.
, and
Hooman
,
K.
,
2012
, “
Quantification of Contact Resistance of Metal Foam Heat Exchangers for Improved, Air-Cooled Condensers in Geothermal Power Application
,”
18th Australasian Fluid Mechanics Conference
, Launceston, Australia, Dec. 3–7, pp. 3–7.https://www.researchgate.net/publication/265686420_Quantification_of_Contact_Resistance_of_Metal_Foam_Heat_Exchangers_for_Improved_Air-cooled_Condensers_in_Geothermal_Power_Application
18.
Nield
,
D. A.
, and Bejan, A.,
2006
,
Convection in Porous Media
, Vol. 3,
Springer
, New York.
19.
Jamet
,
D.
,
Chandesris
,
M.
, and
Goyeau
,
B.
,
2009
, “
On the Equivalence of the Discontinuous One- and Two-Domain Approaches for the Modeling of Transport Phenomena at a Fluid/Porous Interface
,”
Transp. Porous Media
,
78
(
3
), pp.
403
418
.
20.
Antony
,
A. H.
, and
Magda
,
C.
,
2010
, “
Nonlinear Stability of the One-Domain Approach to Modelling Convection in Superposed Fluid and Porous Layers
,”
Proc. R. Soc. A
,
466
(2121), pp. 2695–2705.
21.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
22.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor and Francis
,
New York
.
23.
Dennis
,
S. C. R.
, and
Chang
,
G.
,
1970
, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Number Up to 100
,”
J. Fluid Mech.
,
42
(
3
), pp.
471
489
.
24.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Introduction to Heat Transfer
,
Wiley
, New York.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp. 1598–1605.
You do not currently have access to this content.