In this paper, a particular heat exchanger is designed and analyzed by using second law of thermodynamics. The heat exchanger operates with the cross flow forced convection having cylindrical, square, and hexagonal pin fins (tubular router) placed in the rectangular duct. The pin fins are installed periodically at the top and bottom plates of the duct perpendicular to the flow direction, structured in-line, and staggered sheet layouts. The entropy generation in the flow domain of the channels is calculated to demonstrate the rate of irreversibilities. To obtain the efficiencies, irreversibility, thermal performance factor, and entropy generation number (EGN), the heat exchanger is operated at different temperatures and flow rates by using hot and cold fluids. Optimization of the design parameters and winglet geometry associated with the performance are determined by entropy generation minimization. The variation of the EGN with Reynolds number for various tubular routers is presented. The Reynolds number is determined according to the experimental plan and the performance is analyzed with the method of effectiveness—number of transfer unit (NTU). Based on particular designs, it was determined that the increment in fluid velocity enhances the heat transfer rate, which in turn decreases the heat transfer irreversibility.

References

References
1.
Taufiq
,
B. N.
,
Masjuki
,
H. H.
,
Mahlia
,
T. M. I.
,
Saidur
,
R.
,
Faizul
,
M. S.
, and
Niza Mohamad
,
E.
,
2007
, “
Second Law Analysis for Optimal Thermal Design of Radial Fin Geometry by Convection
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1363
1370
.
2.
Bejan
,
A.
,
1977
, “
The Concept of Irreversibility in Heat Exchanger Design: Counter Flow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Transfer
,
99
(
3
), pp.
374
380
.
3.
Bejan
,
A.
,
1978
, “
General Criterion for Rating Heat Exchanger Performance
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
655
658
.
4.
Bejan
,
A.
,
1982
,
Entropy Generation Through Fluid Flow
,
Wiley
,
New York
, pp.
98
134
.
5.
Bejan
,
A.
,
2001
, “
Thermodynamic Optimization of Geometry in Engineering Flow Systems
,”
Exergy Int. J.
,
1
(
4
), pp.
269
277
.
6.
London
,
A. L.
, and
Shah
,
R. K.
,
1983
, “
Cost of Irreversibilities in Heat Exchanger Design
,”
Heat Transfer Eng.
,
4
(
2
), pp.
59
73
.
7.
Witte
,
L. C.
, and
Shamsundar
,
N.
,
1983
, “
A Thermodynamic Efficiency Concept for Heat Exchanger Devices
,”
ASME J. Eng. Power
,
105
(
1
), pp.
199
203
.
8.
Natalini
,
G.
, and
Sciubba
,
E.
,
1999
, “
Minimization of the Local Rates of Entropy Generation in the Design of Air-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
466
475
.
9.
Sekulic
,
D. P.
, and
Herman
,
C. V.
,
1986
, “
One Approach to Irreversibility Minimization in Compact Cross Flow Heat Exchanger Design
,”
Int. Comm. Heat Mass Transfer
,
13
(
1
), pp.
23
32
.
10.
Hesselgreaves
,
J. E.
,
2000
, “
Rationalization of Second Law of Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4189
4204
.
11.
Khan
,
W. A.
,
2004
, “
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks
,”
Doctorate thesis
, Mechanical Engineering University of Waterloo, Waterloo, ON, Canada.
12.
Kotcioglu
,
I.
,
Caliskan
,
S.
,
Cansiz
,
A.
, and
Baskaya
,
S.
,
2010
, “
Second Law Analysis and Heat Transfer in a Cross-Flow Heat Exchanger With a New Winglet-Type Vortex Generator
,”
Energy
,
35
(
9
), pp.
3686
3695
.
13.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
,
2nd ed.
,
McGraw-Hill
,
New York
.
14.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
,
1980
, “
Experiments on in-Line Pin Fin Arrays and Performance Comparison With Staggered Arrays
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
44
50
.
15.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1980
,
Convective Heat and Mass Transfer
,
2nd ed.
,
McGraw-Hill Book Company
,
New York
, p.
238244
.
16.
Zhukauskas
,
A.
, and
Ulinskas
,
R.
,
1985
, “
Efficiency Parameters for Heat Transfer in Tube Banks
,”
Heat Transfer Eng.
,
6
(
1
), pp.
19
25
.
17.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
700
706
.
18.
Vanfossen
,
G. J.
,
1982
, “
Heat Transfer Coefficients for Staggered Arrays of Short Pin–Fins, Trans
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
268
274
.
19.
Tahat
,
M. A.
,
Kodah
,
Z. H.
,
Jarrah
,
B. A.
, and
Probert
,
S. D.
,
2000
, “
Heat Transfer From Pin–Fin Arrays Experiencing Forced Convection
,”
Appl. Energy
,
67
(
4
), pp.
419
442
.
20.
Wang
,
C. C.
,
Lee
,
C. J.
,
Chang
,
C. T.
, and
Lina
,
S. P.
,
1999
, “
Heat Transfer and Friction Correlation for Compact Louvered Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1945
1956
.
21.
Tanda
,
G.
,
2001
, “
Heat Transfer and Pressure Drop in a Rectangular Channel With Diamond-Shaped Elements
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3529
3541
.
22.
Saha
,
A. K.
, and
Acharya
,
S.
,
2004
, “
Unsteady Flow and Heat Transfer in Parallel-Plate Heat Exchangers With in-Line and Staggered Arrays of Posts
,”
Numer. Heat Transfer
,
46
, pp.
731
763
.
23.
Jeng
,
T. M.
, and
Tzeng
,
S. C.
,
2007
, “
Pressure Drop and Heat Transfer of Square Pin-Fin Arrays in in-Line and Staggered Arrangements
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2364
2375
.
24.
Rao
,
Y.
,
Wan
,
C.
,
Xu
,
Y.
, and
Zang
,
S.
,
2011
, “
Spatially-Resolved Heat Transfer Characteristics in Channels With Pin Fin and Pin Fin-Dimple Arrays
,”
Int. J. Therm. Sci.
,
50
(11), pp.
2277
2289
.
25.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
26.
Liu
,
M.
,
Liu
,
D.
,
Xu
,
S.
, and
Chen
,
Y.
,
2011
, “
Experimental Study on Liquid Flow and Heat Transfer in Micro Square Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5602
5611
.
27.
Al-Jamal
,
K.
, and
Khashashneh
,
H.
,
1998
, “
Experimental Investigation in Heat Transfer of Triangular and Pin Fin Arrays
,”
Heat Mass Transfer
,
34
(
2–3
), pp.
159
162
.
28.
Zheng
,
N.
,
Liu
,
P.
,
Shan
,
F.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Effects of Rib Arrangements on the Flow Pattern and Heat Transfer in an Internally Ribbed Heat Exchanger Tube
,”
Int. J. Therm. Sci.
,
101
, pp.
93
105
.
29.
Ge
,
Y.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Multi-Objective Genetic Optimization of the Heat Transfer for Tube Inserted With Porous Media
,”
Int. J. Heat Mass Transfer
,
101
, pp.
981
987
.
30.
Wang
,
X.
,
Zheng
,
N.
,
Liu
,
Z.
, and
Liu
,
W.
,
2018
, “
Numerical Analysis and Optimization Study on Shell-Side Performances of a Shell and Tube Heat Exchanger With Staggered Baffles
,”
Int. J. Heat Mass Transfer
,
124
, pp.
247
259
.
31.
Kotcioglu
,
I.
,
Khalaji
,
M. N.
, and
Cansiz
,
A.
,
2018
, “
Heat Transfer Analysis of a Rectangular Channel Having Cylindrical Router in Different Winglet Configurations With Taguchi Method
,”
Appl. Therm. Eng.
,
132
, pp.
637
650
.
32.
Burck
,
E.
,
1969
, “
Der Einfluß Der Prandtl-Zahl Auf Den Wärmeuübergang Und Druckverlust Künstlich Aufgerauhter Strömungskanäle-The Influence of the Prandtl Number on the Heat Transfer and Pressure Loss of Artificially Roughened Flow Channels
,”
Wärme-Stoffübertrag-Heat Mass Transfer
,
2
(
2
), pp.
87
98
.
33.
Ogulata
,
R. T.
, and
Doba
,
F.
,
1998
, “
Experiments and Entropy Generation Minimization Analysis of a Cross-Flow Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
41
(
2
), pp.
373
381
.
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
You do not currently have access to this content.