The optical techniques (particle image velocimetry (PIV), laser-induced phosphorescence (LIP), planar laser-induced fluorescence (PLIF)) are used to study unsteady and inhomogeneous temperature and velocity fields of a gas–vapor mixture forming in the immediate vicinity of rapidly evaporating water droplets. Experiments involve various arrangements of several (two, three, and five) water droplets in a heated air flow. We establish the dependencies of the temperature and velocity of a gas–vapor mixture in the trace of each droplet on the heating time, velocity and temperature of the air flow, initial dimensions, and droplet arrangement scheme. Distinctive features of the synergistic effect of a droplet group on their temperature and aerodynamic traces are identified. Longitudinal and transversal dimensions of the aerodynamic and thermal traces of evaporating droplets are established. The length of the temperature trace of one droplet equals 10–12 of its radii, and the width of the temperature and aerodynamic trace of a droplet is no larger than its diameter.

References

References
1.
Korobeinichev
,
O. P.
,
Shmakov
,
A. G.
,
Shvartsberg
,
V. M.
,
Chernov
,
A. A.
,
Yakimov
,
S. A.
,
Koutsenogii
,
K. P.
, and
Makarov
,
V. I.
,
2012
, “
Fire Suppression by Low-Volatile Chemically Active Fire Suppressants Using Aerosol Technology
,”
Fire Saf. J.
,
51
, pp.
102
109
.
2.
Misyura
,
S. Y.
,
2017
, “
Contact Angle and Droplet Heat Transfer During Evaporation on Structured and Smooth Surfaces of Heated Wall
,”
Appl. Surf. Sci.
,
414
, pp.
188
196
.
3.
Kichatov
,
B.
,
Korshunov
,
A.
,
Kiverin
,
A.
, and
Son
,
E.
,
2017
, “
Experimental Study of Foamed Emulsion Combustion: Influence of Solid Microparticles, Glycerol and Surfactant
,”
Fuel Process. Technol.
,
166
, pp.
77
85
.
4.
Zhang
,
Z.
,
Bei
,
H.
,
Li
,
H.
,
Li
,
X.
, and
Gao
,
X.
,
2017
, “
Understanding the co-Pyrolysis Behavior of Indonesian Oil Sands and Corn Straw
,”
Energy Fuels
,
31
(
3
), pp.
2538
2547
.
5.
Glazov
,
S. V.
,
Kislov
,
V. M.
,
Salgansky
,
E. A.
,
Rabinovich
,
O. S.
,
Malinouski
,
A. I.
,
Salganskaya
,
M. V.
,
Pilipenko
,
E. N.
, and
Kolesnikova
,
Y. Y.
,
2017
, “
Effect of Local Rearrangements in the Particle Bed on the Stability of Filtration Combustion of Solid Fuel
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1602
1609
.
6.
Varaksin
,
A. Y.
,
2013
, “
Fluid Dynamics and Thermal Physics of Two-Phase Flows: Problems and Achievements
,”
High Temp.
,
51
(
3
), pp.
377
407
.
7.
Zhdanova
,
A. O.
,
Volkov
,
R. S.
,
Voytkov
,
I. S.
,
Osipov
,
K. Y.
, and
Kuznetsov
,
G. V.
,
2018
, “
Suppression of Forest Fuel Thermolysis by Water Mist
,”
Int. J. Heat Mass Transfer
,
126
, pp.
703
714
.
8.
Misyura
,
S. Y.
,
2018
, “
Evaporation and Heat and Mass Transfer of a Sessile Drop of Aqueous Salt Solution on Heated Wall
,”
Int. J. Heat Mass Transfer
,
116
, pp.
667
674
.
9.
Vysokomornaya
,
O. V.
,
Voytkov
,
I. S.
,
Kuznetsov
,
G. V.
, and
Abramova
,
A. V.
,
2018
, “
High-Temperature Evaporation of Water Emulsion Droplets Used in Thermal Fluid Treatment
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1043
1048
.
10.
Yuen
,
M. C.
, and
Chen
,
L. W.
,
1978
, “
Heat-Transfer Measurements of Evaporating Liquid Droplets
,”
Int. J. Heat Mass Transfer
,
21
(
5
), pp.
537
542
.
11.
Renksizbulut
,
M.
, and
Yuen
,
M. C.
,
1983
, “
Numerical Study of Droplet Evaporation in a High-Temperature Stream
,”
ASME J. Heat Transfer
,
105
(
2
), pp.
389
397
.
12.
Terekhov
,
V. I.
,
Terekhov
,
V. V.
,
Shishkin
,
N. E.
, and
Bi
,
K. C.
,
2010
, “
Heat and Mass Transfer in Disperse and Porous Media Experimental and Numerical Investigations of Nonstationary Evaporation of Liquid Droplets
,”
J. Eng. Phys. Thermophys.
,
83
(
5
), pp.
883
890
.
13.
Kuznetsov
,
G. V.
,
Piskunov
,
M. V.
, and
Strizhak
,
P. A.
,
2016
, “
Evaporation, Boiling and Explosive Breakup of Heterogeneous Droplet in a High-Temperature Gas
,”
Int. J. Heat Mass Transfer
,
92
, pp.
360
369
.
14.
Sazhin
,
S. S.
,
2017
, “
Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems
,”
Fuel
,
196
, pp.
69
101
.
15.
Kuznetsov
,
G. V.
,
Strizhak
,
P. A.
, and
Volkov
,
R. S.
,
2017
, “
Temperature Measurement in the Trace of Water Droplet When Heating by Hot Air
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
256
264
.
16.
Kuznetsov
,
G. V.
,
Strizhak
,
P. A.
,
Volkov
,
R. S.
, and
Voytkov
,
I. S.
,
2017
, “
Gas Temperature in the Trace of Water Droplets Streamlined by Hot Air Flow
,”
Int. J. Multiphase Flow
,
91
, pp.
184
193
.
17.
Voytkov
,
I. S.
,
Volkov
,
R. S.
, and
Strizhak
,
P. A.
,
2017
, “
Reducing the Flue Gases Temperature by Individual Droplets, Aerosol, and Large Water Batches
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
301
316
.
18.
Maqua
,
C.
,
Castanet
,
G.
,
Grisch
,
F.
,
Lemoine
,
F.
,
Kristyadi
,
T.
, and
Sazhin
,
S. S.
,
2008
, “
Monodisperse Droplet Heating and Evaporation: Experimental Study and Modelling
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3932
3945
.
19.
Maqua
,
C.
,
Castanet
,
G.
,
Lemoine
,
F.
,
Doué
,
N.
, and
Lavergne
,
G.
,
2006
, “
Temperature Measurements of Binary Droplets Using Three-Color Laser-Induced Fluorescence
,”
Exp. Fluids
,
40
(
5
), pp.
786
797
.
20.
Maqua
,
C.
,
Depredurand
,
V.
,
Castanet
,
G.
,
Wolff
,
M.
, and
Lemoine
,
F.
,
2007
, “
Composition Measurement of Bicomponent Droplets Using Laser-Induced Fluorescence of Acetone
,”
Exp. Fluids
,
43
(
6
), pp.
979
992
.
21.
Castanet
,
G.
,
Maqua
,
C.
,
Orain
,
M.
,
Grisch
,
F.
, and
Lemoine
,
F.
,
2007
, “
Investigation of Heat and Mass Transfer Between the Two Phases of an Evaporating Droplet Stream Using Laser-Induced Fluorescence Techniques: Comparison With Modeling
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3670
3683
.
22.
Maqua
,
C.
,
Castanet
,
G.
, and
Lemoine
,
F.
,
2008
, “
Bicomponent Droplets Evaporation: Temperature Measurements and Modelling
,”
Fuel
,
87
(
13–14
), pp.
2932
2942
.
23.
Strizhak
,
P. A.
,
Volkov
,
R. S.
,
Castanet
,
G.
,
Lemoine
,
F.
,
Rybdylova
,
O.
, and
Sazhin
,
S. S.
,
2018
, “
Heating and Evaporation of Suspended Water Droplets: Experimental Studies and Modelling
,”
Int. J. Heat Mass Transfer
,
127
, pp.
92
106
.
24.
Lavieille
,
P.
,
Lemoine
,
F.
,
Lavergne
,
G.
,
Virepinte
,
J. F.
, and
Lebouche
,
M.
,
2000
, “
Temperature Measurements on Droplets in Monodisperse Stream Using Laser-Induced Fluorescence
,”
Exp. Fluids
,
29
(
5
), pp.
429
437
.
25.
Castanet
,
G.
,
Labergue
,
A.
, and
Lemoine
,
F.
,
2011
, “
Internal Temperature Distributions of Interacting and Vaporizing Droplets
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1181
1190
.
26.
Castanet
,
G.
,
Perrin
,
L.
,
Caballina
,
O.
, and
Lemoine
,
F.
,
2016
, “
Evaporation of Closely-Spaced Interacting Droplets Arranged in a Single Row
,”
Int. J. Heat Mass Transfer
,
93
, pp.
788
802
.
27.
Lemoine
,
F.
, and
Castanet
,
G.
,
2013
, “
Temperature and Chemical Composition of Droplets by Optical Measurement Techniques: A State-of-the-Art Review
,”
Exp. Fluids
,
54
(
7
), p.
1572
.
28.
Akhmetbekov
,
Y. K.
,
Alekseenko
,
S. V.
,
Dulin
,
V. M.
,
Markovich
,
D. M.
, and
Pervunin
,
K. S.
,
2010
, “
Planar Fluorescence for Round Bubble Imaging and Its Application for the Study of an Axisymmetric Two-Phase Jet
,”
Exp. Fluids
,
48
(
4
), pp.
615
629
.
29.
Yan
,
F.
, and
Rinoshika
,
A.
,
2013
, “
High-Speed PIV Measurement of Particle Velocity Near the Minimum Air Velocity in a Horizontal Self-Excited Pneumatic Conveying of Using Soft Fins
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
534
543
.
30.
Kravtsov
,
Z. D.
,
Tolstoguzov
,
R. V.
,
Chikishev
,
L. M.
, and
Dulin
,
V. M.
,
2016
, “
PIV and OH PLIF Study of Impinging Propane-Air Jet-Flames
,”
J. Phys.: Conf. Ser.
,
754
, p.
072001
.
31.
Nebuchinov
,
A. S.
,
Lozhkin
,
Y. A.
,
Bilsky
,
A. V.
, and
Markovich
,
D. M.
,
2017
, “
Combination of PIV and PLIF Methods to Study Convective Heat Transfer in an Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
139
146
.
32.
Williams
,
B.
,
Ewart
,
P.
,
Wang
,
X.
,
Stone
,
R.
,
Ma
,
H.
,
Walmsley
,
H.
,
Cracknell
,
R.
,
Stevens
,
R.
,
Richardson
,
D.
, and
Fu
,
H.
,
2010
, “
Quantitative Planar Laser-Induced Fluorescence Imaging of Multi-Component Fuel/Air Mixing in a Firing Gasoline-Direct-Injection Engine: Effects of Residual Exhaust Gas on Quantitative PLIF
,”
Combust. Flame
,
157
(
10
), pp.
1866
1878
.
33.
Charogiannis
,
A.
, and
Beyrau
,
F.
,
2013
, “
Laser Induced Phosphorescence Imaging for the Investigation of Evaporating Liquid Flows
,”
Exp. Fluids
,
54
, p.
1518
.
34.
Abram
,
C.
,
Fond
,
B.
,
Heyes
,
A. L.
, and
Beyrau
,
F.
,
2013
, “
High-Speed Planar Thermometry and Velocimetry Using Thermographic Phosphor Particles
,”
Appl. Phys. B
,
111
(
2
), pp.
155
160
.
35.
Kuznetsov
,
G. V.
, and
Strizhak
,
P. A.
,
2015
, “
Effect of the Volume Concentration of a Set of Water Droplets Moving Through High-Temperature Gases on the Temperature in the Wake
,”
J. Appl. Mech. Tech. Phys.
,
56
(
4
), pp.
558
568
.
36.
Volkov
,
R. S.
, and
Strizhak
,
P. A.
,
2017
, “
Planar Laser-Induced Fluorescence Diagnostics of Water Droplets Heating and Evaporation at High-Temperature
,”
Appl. Therm. Eng.
,
127
, pp.
141
156
.
37.
Kim
,
A. V.
,
Medvedev
,
N. N.
, and
Geiger
,
A.
,
2014
, “
Molecular Dynamics Study of the Volumetric and Hydrophobic Properties of the Amphiphilic Molecule C8E6
,”
J. Mol. Liq.
,
189
, pp.
74
80
.
38.
Voloshin
,
V. P.
,
Kim
,
A. V.
,
Medvedev
,
N. N.
,
Winter
,
R.
, and
Geiger
,
A.
,
2014
, “
Calculation of the Volumetric Characteristics of Biomacromolecules in Solution by the Voronoi-Delaunay Technique
,”
Biophys. Chem.
,
192
, pp.
1
9
.
39.
Dombrovsky
,
L. A.
,
Dembele
,
S.
, and
Wen
,
J. X.
,
2016
, “
A Simplified Model for the Shielding of Fire Thermal Radiation by Water Mists
,”
Int. J. Heat Mass Transfer
,
96
, pp.
199
209
.
40.
Tonini
,
S.
, and
Cossali
,
G. E.
,
2015
, “
A Novel Formulation of Multi-Component Drop Evaporation Models for Spray Applications
,”
Int. J. Therm. Sci.
,
89
, pp.
245
253
.
41.
Choo
,
S.
,
He
,
B.
, and
Duan
,
F.
,
2015
, “
Evaporation of Droplet With and Without Laser Excitation
,”
Appl. Therm. Eng.
,
88
, pp.
341
346
.
42.
Zhang
,
Y.
,
Jia
,
M.
,
Yi
,
P.
,
Liu
,
H.
, and
Xie
,
M.
,
2017
, “
An Efficient Liquid Film Vaporization Model for Multi-Component Fuels Considering Thermal and Mass Diffusions
,”
Appl. Therm. Eng.
,
112
, pp.
534
548
.
You do not currently have access to this content.