Evaporation of layers of aqueous solutions of salts (LiBr, CaCl2, NaCl, MgCl2, BaCl2, and CsCl) is studied experimentally. Experimental data are compared with evaporation of the water layer. The solution is placed on a horizontal surface of a cylindrical heating section. Experiments on surface crystallization of salts are carried out. For aqueous solutions of salts LiBr, LiCl, and CaCl2, there is an extremum for the heat transfer coefficient αl. For water and for solutions of salts NaCl and CsCl, the extremum is absent. The first factor is a decreasing function of time, and the second factor is an increasing function of time. For the water layer, both factors continuously increase with time, and the maximum evaporation rate corresponds to the final stage of evaporation. The heat balance for interface layer is made up. The role of the free gas convection in the heat balance strongly depends on the salt concentration and varies with the rise of evaporation time. For low salt concentrations the influence of free convection in the gas phase on heat transfer in the liquid phase can be neglected; however, for high concentrations this effect is comparable with other factors. The curves for the rate of crystallization have been built. More than two time differences between the experiment and the calculation are associated with the kinetics of dendritic structures.

References

References
1.
Nakoryakov
,
V. E.
, and
Grigoryeva
,
N. I.
,
2010
,
Nonisothermal Absorption in thermotransformers
,
Nauka
,
Novosibirsk, Russia
.
2.
Lengyel
,
V. P.
, and
Morvay
,
S.
,
1973
, “
Chemie und Technologie der Zellstoffherstellung
,”
Akadémiai Kiadó
,
Budapest, Hungary
.
3.
Nakoryakov
,
V. E.
,
Grigoryeva
,
N. I.
,
Bufetov
,
N. S.
, and
Dekhtyar
,
R. A.
,
2008
, “
Heat and Mass Transfer Intensification at steam absorption by surfactant additives
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5175
5181
.
4.
Slesareva
,
E. Y.
,
Dekhtyar
,
R. A.
, and
Ovchinnikov
,
V. V.
,
2015
, “
Interaction of Two Rivulets on the Bottom Side of an Inclined Plate
,”
MATEC Web Conferences
,
23
, p.
01036
.
5.
Meleshkin
,
A. V.
,
Ovchinnikov
,
V. V.
, and
Dekhtyar
,
R. A.
,
2017
, “
Investigation of the Effect of a Gap Between the Cylindrical Substrate and Curvilinear Ring on the Regimes of Liquid Film Flow
,”
MATEC Web Conf.
,
110
, p.
01056
.
6.
Ajaev
,
V. S.
,
Gatapova
,
E. Y.
, and
Kabov
,
O. A.
,
2013
, “
Application of Floquet Theory to the Stability of Liquid Films on Structured Surfaces
,”
Phys. Fluids
,
25
(
12
), p.
122102
.
7.
Burelbach
,
J. P.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
,
1990
, “
Steady Thermocapillary Flows of Thin Liquid Layers—II: Experiment
,”
Phys. Fluids A
,
2
(
3
), pp.
321
333
.
8.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
,
1997
, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
931
980
.
9.
Kuznetsov
,
V. V.
, and
Shamirzaev
,
A. S.
,
2015
, “
Comparative Analysis of Boiling and Condensation Heat Transfer in Upflow for Freon R-21 in Minichannels
,”
J. Eng. Thermophys.
,
24
(
4
), pp.
357
361
.
10.
Zheng
,
Y.
,
Ma
,
X.
,
Li
,
Y.
,
Jiang
,
R.
,
Wang
,
K.
,
Lan
,
Z.
, and
Liang
,
Q.
,
2017
, “
Experimental Study of Falling Film Evaporation Heat Transfer on Superhydrophilic Horizontal-Tubes at Low Spray Density
,”
Appl. Therm. Eng.
,
111
, pp.
1548
1556
.
11.
Wunder
,
F.
,
Enders
,
S.
, and
Semiat
,
R.
,
2017
, “
Numerical Simulation of Heat Transfer in a Horizontal Falling Film Evaporator of Multiple-Effect Distillation
,”
Desalination
,
401
, pp.
206
229
.
12.
Xu
,
L.
,
Ge
,
M.
,
Wang
,
S.
, and
Wang
,
Y.
,
2004
, “
Heat-Transfer Film Coefficients of Falling Film Horizontal Tube Evaporators
,”
Desalination
,
166
, pp.
223
230
.
13.
Meyer
,
T.
,
2014
, “
Improvement of the Exact Analytical Solutions for Combined Heat and Mass Transfer Problems Obtained With the Fourier Method
,”
Int. J. Refrig.
,
43
, pp.
133
142
.
14.
Grossman
,
G.
,
1983
, “
Simultaneous Heat and Mass Transfer in film absorption Under laminar flow
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
357
371
.
15.
Meyer
,
T.
, and
Ziegler
,
F.
,
2014
, “
Analytical Solution for Combined Heat and Mass Transfer in Laminar Falling Film Absorption Using First Type Boundary Conditions at the Interface
,”
Int. J. Heat Mass Transfer
,
73
, pp.
141
151
.
16.
Rozentsvaig
,
A. K.
, and
Strashinskii
,
C. S.
,
2016
, “
Modeling of Heat Transfer Conditions in Cooling Lubricant Emulsions With Low-Boiling Continuous Media in Narrow Gaps
,”
Int. J. Heat Mass Transfer
,
102
, pp.
555
560
.
17.
Conde
,
M. R.
,
2004
, “
Properties of Aqueous Solution of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
367
382
.
18.
Iyoki
,
S.
, and
Uemura
,
T.
,
1989
, “
Heat Capacity of the Water-Lithium Bromide System and the Water-Lithium Bromide-Zinc Bromide-Lithium Chloride System at High Temperatures
,”
Int. J. Refrigeration
,
12
(
6
), pp.
323
326
.
19.
Lower
,
H.
,
1960
, “
Thermodynamische Und Physikalische Eigenschaften Der Wassrigen Lithiumbromid-Losung
,” Dissertation, Technische Hochschule Karlsruhe, Karlsruhe, Germany.
20.
Ibarra-Bahena
,
J.
,
Dehesa-Carrasco
,
U.
,
Romero
,
R. J.
,
Rivas-Herrera
,
B.
, and
Rivera
,
W.
,
2017
, “
Experimental Assessment of a Hydrophobic Membrane-Based Desorber/Condenser With H2O/LiBr Mixture for Absorption Systems
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
145
159
.
21.
Nakoryakov
,
V. E.
,
Misyura
S. Y.
,
Elistratov
S. L.
, and
Dekhtyar
R. A.
,
2014
, “
Two-Phase Nonisothermal Flows of LiBr Water Solution in Minichannels
,”
J. Eng. Thermophys.
23
(
4
), pp.
1
7
.
22.
Camassel
,
B.
,
Sghaier
,
N.
,
Prat
,
M.
, and
Ben Nasrallah
,
S.
,
2005
, “
Evaporation in Capillary Tube of Square Cross-Section: Application to Ion Transport
,”
Chem. Eng. Sci.
,
60
(
3
), pp.
815
826
.
23.
Shahidzadeh-Bonn
,
N.
,
Rafai
,
S.
,
Bonn
,
D.
, and
Wegdam
,
G.
,
2008
, “
Salt Crystallization During Evaporation: Impact of Interfacial Properties
,”
Langmuir
,
24
(
16
), pp.
8599
8605
.
24.
Linnow
,
K.
,
Steiger
,
M.
,
Lemster
,
C.
,
Clercq
,
H. D.
, and
Jovanovic
,
M.
,
2013
, “
In Situ Raman Observation of the Crystallization in NaNO3–Na2SO4–H2O solution droplet
,”
Environ. Earth Sci.
,
69
(
5
), pp.
1609
1620
.
25.
Shahidzadeh
,
N.
,
Schut
,
M. F. L.
,
Desarnaud
,
J.
,
Prat
,
M.
, and
Bonn
,
D.
,
2015
, “
Salt Stains From Evaporating Droplets
,”
Sci. Rep.
,
5
, p.
10335
.
26.
Spalding
,
D. B.
,
1953
, “
The Combustion of Liquid Fuel
,”
Symp. Combust.
,
4
(
1
), pp.
847
864
.
27.
Kutateladze
,
S. S.
,
1963
,
Fundamentals of Heat Transfer
,
E.
Arnold
, ed.,
Wiley
,
London
.
28.
Hu
,
H.
, and
Larson
,
R. G.
,
2005
, “
Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet
,”
Langmuir
,
21
(
9
), pp.
3972
3980
.
29.
Hu
,
H.
, and
Larson
,
R. G.
,
2006
, “
Marangoni Effect Reverses Coffee-Ring Depositions
,”
J. Phys. Chem. B.
,
110
(
14
), pp.
7090
7094
.
30.
Misyura
,
S. Y.
,
2017
, “
Contact Angle and Droplet Heat Transport During Evaporation on Structured and Smooth Surfaces of Heated Wall
,”
Appl. Surf. Sci.
,
414
, pp.
188
196
.
31.
Stanford
,
V. L.
,
McCulley
,
C. M.
, and
Vyazovkin
,
S.
,
2016
, “
Isoconversional Kinetics of Nonisothermal Crystallization of Salts From Solutions
,”
J. Phys. Chem. B
,
120
(
25
), pp.
5703
5709
.
32.
Chernov
,
A. A.
,
Pil'nik
,
A. A.
, and
Islamov
,
D. R.
,
2016
, “
Initial Stage of Nucleation-Mediated Crystallization of a Supercooled Melt
,”
J. Crystal Growth
,
450
, pp.
45
49
.
33.
Misyura
,
S. Y.
,
2016
, “
The Influence of Porosity and Structural Parameters on Different Kinds of Gas Hydrate Dissociation
,”
Sci. Rep.
,
6
, p.
30324
.
34.
Chernov
,
A. A.
,
Pil'Nik
,
A. A.
,
Elistratov
,
D. S.
,
Mezentsev
,
I. V.
,
Meleshkin
,
A. V.
,
Bartashevich
,
M. V.
, and
Vlasenko
,
M. G.
,
2017
, “
New Hydrate Formation Methods in a Liquid-Gas Medium
,”
Sci. Rep.
,
7
, p.
40809
.
35.
Lyubov
,
B. Y.
,
1975
,
Theory of crystallization in large volumes
,
Nauka Publishers
,
Moscow, Russia
.
36.
Mullin
,
J. W.
,
2004
,
Crystallization
,
4th ed.
,
Butterworth
,
Oxford, UK
.
You do not currently have access to this content.