An inverse radiation-conduction analysis is performed for simultaneous estimation of the thermal properties in an absorbing, emitting, and linear-anisotropically scattering medium with spatially variable refractive index. The discrete ordinates method in conjugation with finite volume method is adopted to solve the direct problem. The conjugate gradient method (CGM) is employed to simultaneously estimate the conduction-radiation parameter, optical thickness, single scattering albedo, scattering phase function, and the wall emissivities from the knowledge of the exit radiation intensities over the boundaries. The effects of these parameters and the measurement errors on the precision of the inverse analysis are investigated. Results show that the proposed inverse approach can successfully retrieve the unknown parameters for different refractive index profiles.

References

References
1.
Flach
,
G. P.
, and
Özişik
,
M. N.
,
1989
, “
Inverse Heat Conduction Problem of Simultaneously Estimating Spatially Varying Thermal Conductivity and Heat Capacity per Unit Volume
,”
Numer. Heat Transfer, Part A
,
16
(
2
), pp.
249
266
.
2.
Neto
,
A. S.
, and
Özişik
,
M. N.
,
1994
, “
The Estimation of Space and Time Dependent Strength of a Volumetric Heat Source in a One-Dimensional Plate
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
909
915
.
3.
Li
,
H. Y.
, and
Özişik
,
M. N.
,
1993
, “
Inverse Radiation Problem for Simultaneous Estimation of Temperature Profile and Surface Reflectivity
,”
J. Thermophys. Heat Transfer
,
7
(
1
), pp.
88
93
.
4.
Neto
,
A. S.
, and
Özişik
,
M. N.
,
1995
, “
An Inverse Problem of Simultaneous Estimation of Radiation Scattering Phase Function, Albedo and Optical Thickness
,”
J, Quant. Spectrosc. Radiat. Transfer
,
53
(
4
), pp.
397
409
.
5.
Neto
,
C. S.
, and
Neto
,
A. S.
,
2003
, “
Estimation of Optical Thickness, Single Scattering Albedo and Diffuse Reflectivities With a Minimization Algorithm Based on an Interior Points Method
,”
17th International Congress of Mechanical Engineering
(
COBEM
), São Paulo, Brazil, Nov. 10–14.http://www.abcm.org.br/anais/cobem/2003/html/pdf/COB03-1154.pdf
6.
Hosseini Sarvari
,
S. M.
,
Howell
,
J. R.
, and
Mansouri
,
S. H.
,
2003
, “
A General Method for Estimation of Boundary Conditions Over the Surface of Shields Surrounded by Radiating Enclosures
,”
Numer. Heat Transfer, Part B
,
44
(
1
), pp.
25
43
.
7.
Hosseini Sarvari
,
S. M.
,
2007
, “
Inverse Estimation of Radiative Source Term in Two-Dimensional Irregular Media
,”
Fifth Symposium on Radiative Heat Transfer
, Bodrum, Turkey, June 17–22.http://old.ichmt.org/rad-07/Abstracts%20of%20Manuscripts/RAD-V-017-Abs.pdf
8.
Hosseini Sarvari
,
S. M.
,
2015
, “
Inverse Reconstruction of Path-Length κ-Distribution in a Plane-Parallel Radiative Medium
,”
Numer. Heat Transfer, Part A, Appl.
,
68
(
3
), pp.
336
354
.
9.
Li
,
H. Y.
,
1999
, “
Estimation of Thermal Properties in Combined Conduction and Radiation
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
565
572
.
10.
Hosseini Sarvari
,
S. M.
,
Howell
,
J. R.
, and
Mansouri
,
S. H.
,
2003
, “
Inverse Boundary Design Conduction-Radiation Problem in Irregular Two-Dimensional Domains
,”
Numer. Heat Transfer, Part B
,
44
(
3
), pp.
209
224
.
11.
Hosseini Sarvari
,
S. M.
,
2005
, “
Inverse Determination of Heat Source Distribution in Conductive–Radiative Media With Irregular Geometry
,”
J. Quant. Spectrosc. Radiat. Transfer
,
93
(
1–3
), pp.
383
395
.
12.
Verma
,
S.
, and
Balaji
,
C.
,
2007
, “
Multi-Parameter Estimation in Combined Conduction–Radiation From a Plane Parallel Participating Medium Using Genetic Algorithms
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1706
1714
.
13.
Das
,
R.
,
Mishra
,
S. C.
, and
Uppaluri
,
R.
,
2008
, “
Multiparameter Estimation in a Transient Conduction-Radiation Problem Using the Lattice Boltzmann Method and the Finite-Volume Method Coupled With the Genetic Algorithms
,”
Numer. Heat Transfer, Part A
,
53
(
12
), pp.
1321
1338
.
14.
Das
,
R.
,
Mishra
,
S. C.
, and
Uppaluri
,
R.
,
2009
, “
Retrieval of Thermal Properties in a Transient Conduction–Radiation Problem With Variable Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2749
2758
.
15.
Das
,
R.
,
Mishra
,
S. C.
, and
Uppaluri
,
R.
,
2010
, “
Inverse Analysis Applied to Retrieval of Parameters and Reconstruction of Temperature Field in a Transient Conduction–Radiation Heat Transfer Problem Involving Mixed Boundary Conditions
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
52
57
.
16.
Chopade
,
R. P.
,
Agnihotri
,
E.
,
Singh
,
A. K.
,
Kumar
,
A.
,
Uppaluri
,
R.
,
Mishra
,
S. C.
, and
Mahanta
,
P.
,
2011
, “
Application of a Particle Swarm Algorithm for Parameter Retrieval in a Transient Conduction-Radiation Problem
,”
Numer. Heat Transfer, Part A
,
59
(
9
), pp.
672
692
.
17.
Baghban
,
M.
,
Mansouri
,
S. H.
, and
Shams
,
Z.
,
2014
, “
Inverse Radiation-Conduction Estimation of Temperature-Dependent Emissivity Using a Combined Method of Genetic Algorithm and Conjugate Gradient
,”
J. Mech. Sci. Technol.
,
28
(
2
), p.
739
.
18.
Qi
,
H.
,
Niu
,
C. Y.
,
Gong
,
S.
,
Ren
,
Y. T.
, and
Ruan
,
L. M.
,
2015
, “
Application of the Hybrid Particle Swarm Optimization Algorithms for Simultaneous Estimation of Multi-Parameters in a Transient Conduction–Radiation Problem
,”
Int. J. Heat Mass Transfer
,
83
, pp.
428
440
.
19.
Siegel
,
R.
, and
Spuckler
,
C. M.
,
1992
, “
Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
781
784
.
20.
Siegel
,
R.
, and
Spuckler
,
C. M.
,
1993
, “
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
,”
J. Thermophys. Heat Transfer
,
7
(
4
), pp.
624
630
.
21.
Siegel
,
R.
, and
Spuckler
,
C. M.
,
1993
, “
Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer
,”
ASME J. Heat Transfer
,
115
(
1
), pp.
194
200
.
22.
Abdallah
,
P. B.
, and
Le Dez
,
V.
,
2000
, “
Temperature Field Inside an Absorbing–Emitting Semi-Transparent Slab at Radiative Equilibrium With Variable Spatial Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
65
(
4
), pp.
595
608
.
23.
Abdallah
,
P. B.
, and
Le Dez
,
V.
,
2000
, “
Thermal Emission of a Semi-Transparent Slab With Variable Spatial Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
67
(
3
), pp.
185
198
.
24.
Abdallah
,
P. B.
, and
Le Dez
,
V.
,
2000
, “
Thermal Emission of a Two-Dimensional Rectangular Cavity With Spatial Affine Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
66
(
6
), pp.
555
569
.
25.
Liu
,
L. H.
,
2004
, “
Discrete Curved Ray-Tracing Method for Radiative Transfer in an Absorbing–Emitting Semitransparent Slab With Variable Spatial Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
83
(
2
), pp.
223
228
.
26.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Yu
,
Q. Z.
,
2003
, “
Temperature Distributions in an Absorbing–Emitting–Scattering Semitransparent Slab With Variable Spatial Refractive Index
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2917
2920
.
27.
Lemonnier
,
D.
, and
Le Dez
,
V.
,
2002
, “
Discrete Ordinates Solution of Radiative Transfer Across a Slab With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
195
204
.
28.
Liu
,
L. H.
,
2005
, “
Finite Element Solution of Radiative Transfer Across a Slab With Variable Spatial Refractive Index
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2260
2265
.
29.
Liu
,
L. H.
,
Zhang
,
L.
, and
Tan
,
H. P.
,
2006
, “
Finite Element Method for Radiation Heat Transfer in Multi-Dimensional Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
97
(
3
), pp.
436
445
.
30.
Liu
,
L. H.
,
2006
, “
Finite Volume Method for Radiation Heat Transfer in Graded Index Medium
,”
J. Thermophys. Heat Transfer
,
20
(
1
), pp.
59
66
.
31.
Asllanaj
,
F.
, and
Fumeron
,
S.
,
2010
, “
Modified Finite Volume Method Applied to Radiative Transfer in 2D Complex Geometries and Graded Index Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
2
), pp.
274
279
.
32.
Liu
,
L. H.
,
2006
, “
Meshless Method for Radiation Heat Transfer in Graded Index Medium
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
219
229
.
33.
Liu
,
L. H.
,
Tan
,
J. Y.
, and
Li
,
B. X.
,
2006
, “
Meshless Approach for Coupled Radiative and Conductive Heat Transfer in One-Dimensional Graded Index Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
101
(
2
), pp.
237
248
.
34.
Krishna
,
N. A.
, and
Mishra
,
S. C.
,
2006
, “
Discrete Transfer Method Applied to Radiative Transfer in a Variable Refractive Index Semitransparent Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
102
(
3
), pp.
432
440
.
35.
Hosseini Sarvari
,
S. M.
,
2016
, “
A New Approach to Solve the Radiative Transfer Equation in Plane-Parallel Semitransparent Media With Variable Refractive Index Based on the Discrete Transfer Method
,”
Int. Commun. Heat Mass Transfer
,
78
, pp.
54
59
.
36.
Hosseini Sarvari
,
S. M.
,
2017
, “
Variable Discrete Ordinates Method for Radiation Transfer in Plane-Parallel Semi-Transparent Media With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
199
, pp.
36
44
.
37.
Tan
,
H. P.
,
Wang
,
P. Y.
, and
Xia
,
X. L.
,
2000
, “
Transient Coupled Radiation and Conduction in an Absorbing and Scattering Composite Layer
,”
J. Thermophys. Heat Transfer
,
14
(
1
), pp.
77
87
.
38.
Abdallah
,
P. B.
, and
Le Dez
,
V.
,
2000
, “
Radiative Flux Field Inside an Absorbing–Emitting Semi-Transparent Slab With Variable Spatial Refractive Index at Radiative Conductive Coupling
,”
J. Quant. Spectrosc. Radiat. Transfer
,
67
(
2
), pp.
125
137
.
39.
Xia
,
X. L.
,
Huang
,
Y.
,
Tan
,
H. P.
, and
Zhang
,
X. B.
,
2002
, “
Simultaneous Radiation and Conduction Heat Transfer in a Graded Index Semitransparent Slab With Gray Boundaries
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2673
2688
.
40.
Liu
,
L. H.
,
2004
, “
Inverse Radiative Problem in Semitransparent Slab With Variable Spatial Refractive Index
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
410
412
.
41.
Namjoo
,
A.
,
Hosseini Sarvari
,
S. M.
,
Behzadmehr
,
A.
, and
Mansouri
,
S. H.
,
2009
, “
Inverse Radiation Problem of Temperature Distribution in One-Dimensional Isotropically Scattering Participating Slab With Variable Refractive Index
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
8
), pp.
491
505
.
42.
Namjoo
,
A.
,
Hosseini Sarvari
,
S. M.
,
Lemonnier
,
D.
, and
Le Dez
,
V.
,
2009
, “
Estimation of Arbitrary Refractive Index Distribution in a One-Dimensional Semitransparent Graded Index Medium
,”
Computational Thermal Radiation in Participating Media III (Eurotherm83)
, Lisboa, Portugal, Apr. 15–17.
43.
Wei
,
L. Y.
,
Qi
,
H.
,
Ren
,
Y. T.
,
Sun
,
J. P.
, and
Ruan
,
L. M.
,
2017
, “
Multi-Parameter Estimation in Semitransparent Graded-Index Media Based on Coupled Optical and Thermal Information
,”
Int. J. Therm. Sci.
,
113
, pp.
116
129
.
44.
Özişik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer
,
Taylor & Francis, New York
.
45.
Wirgin
,
A.
,
2004
, “
The Inverse Crim
,” eprint
arXiv: math-ph/0401050
.https://arxiv.org/abs/math-ph/0401050
46.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2007
, “
Statistical Inverse Problems: Discretization, Model Reduction and Inverse Crimes
,”
J. Comput. Appl. Math.
,
198
(
2
), pp.
493
504
.
You do not currently have access to this content.